Hitting two birds with four stones: A numerical and theoretical study of multilevel performance for two-point correlator calculations

Ben Kitching-Morley

University of Southampton

30th July 2021

DiRAC

Ben Kitching-Morley University of Southampton [Multilevel performance in Lattice QFT](#page-14-0) 30th July 2021 1 / 15

Who am 1?

- \triangleright Supervised by Andreas Jüttner and Kostas Skenderis
- \triangleright Part of a broader collaboration LatCos looking into Holographic Cosmology on a lattice
- Guido Cossu (Edinburgh, now Braid Technologies)
- Luigi Del Debbio (Edinburgh)
- Elizabeth Dobson (Edinburgh, now University of Graz)
- Elizabeth Gould (Southampton, now in Queen's University, Canada)
- Ben Kitching-Morley (Southampton)
- Andreas Jüttner (CERN, Southampton)
- Joseph K.L. Lee (Edinburgh)
- Valentin Nourry (Edinburgh and Southampton, now Université de Paris)

 $\mathcal{A} \left(\overline{\mathbf{H}} \right) \rightarrow \mathcal{A} \left(\overline{\mathbf{H}} \right) \rightarrow \mathcal{A} \left(\overline{\mathbf{H}} \right)$

- Antonin Portelli (Edinburgh)
- Henrique Bergallo Rocha (Edinburgh)
- Kostas Skenderis (Southampton)

- \triangleright LatCos research motivated by holographic models of the early universe [\(McFadden and Skenderis, 2010\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.021301)
- \triangleright Recent works include [\(Cossu et al., 2021\)](https://link.aps.org/doi/10.1103/PhysRevLett.126.221601) and [\(Del Debbio et al.,](https://link.aps.org/doi/10.1103/PhysRevD.103.114501) [2021\)](https://link.aps.org/doi/10.1103/PhysRevD.103.114501)
- \triangleright Other LatCos talks:
	- 28/7 Wed 14:00 (Andreas Jüttner)
	- 28/7 Wed 14:15 (Henrique Bergallo Rocha)
	- 28/7 Wed 14:30 (Joseph Lee)
	- 29/7 Thur 13:15 (Luigi Del Debbio)

- \triangleright Multilevel was investigated to improve performance of our simulations
- Multilevel is extremely useful in lattice gauge theory (\sim 200 papers)
- \triangleright There is active research in extending multilevel
	- \bullet In QCD using approximate locality of the action (Ce, Giusti, and [Schaefer, 2017\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.034503)
	- For reducing autocorrelation times at criticality (Jansen, Müller, and [Scheichl, 2020\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.114512)
	- In theories where symmetries can be used to better leverage multilevel [\(Della Morte and Giusti, 2011\)](https://link.springer.com/article/10.1007/JHEP05(2011)056)
	- In g_{μ} 2 [\(Dalla Brida et al., 2021\)](https://www.sciencedirect.com/science/article/pii/S0370269321001313)

 Ω

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

- The 2D-Ising model has been used as a toy model
- ² Multilevel is a technique involving a decomposition of the path integral [\(Parisi, Petronzio, and Rapuano, 1983,](https://doi.org/10.1016/0370-2693(83)90930-9) Lüscher and Weisz, [2001\)](https://iopscience.iop.org/article/10.1088/1126-6708/2001/09/010)
- ³ Multilevel can reduce statistical error of two-point functions
- Performance is better when the correlation length is small compared to the lattice size
- ⁵ We predicted this performance theoretically in a model independent way

Exploring multilevel: The Ising Model

 \triangleright Use Ising model \rightarrow simple, but captures much of the physics \triangleright The fields in this model can be "up" or "down", e.g. $\phi_i \in \{-1,1\}$

Ising model partition function

$$
Z = \int \mathcal{D}\phi \exp\left(-\beta \int d^{dim}x J \sum_{(i,j)n.n.} \phi_i \phi_j + B \sum_i \phi_i\right)
$$

- \triangleright Taken $J = 1$, $B = 0$ and $dim = 2$ in this project.
- \triangleright Critical point known exactly $\beta_{\sf c} = \frac{1}{2}$ $\frac{1}{2}$ log $(1+\sqrt{2})$ [\(Onsager, 1944\)](https://doi.org/10.1103/PhysRev.65.117)

What is Multilevel?

First proposed in [\(Parisi, Petronzio, and Rapuano, 1983\)](https://doi.org/10.1016/0370-2693(83)90930-9) and extended in (Lüscher and Weisz, 2001) as a solution to the **Signal-to-noise problem**

boundary layer(s) ∂B and sub-regions separated by the boundary(s) Λ_r .

We use N **boundary configurations** labelled by $i \in [1, 2, ..., N]$ and M sub-lattice configurations labelled by $j_r \in [1, 2, ..., M]$ for region Λ_r per boundary configuration.

Factorization of the Path Integral

$$
\int_{x \in \Lambda} \mathcal{D}\phi(x) e^{-S[\Lambda; \partial B]} = \int_{x \in \partial B} \mathcal{D}\phi(x) e^{-S[\partial B]} \prod_{r} \int_{x \in \Lambda_r} \mathcal{D}\phi(x) e^{-S[\Lambda_r; \partial B]}
$$

つへへ

Building multilevel correlators

Use **slice-coordinates** from now on.

$$
\Phi_i(x) = \frac{1}{M} \sum_{j_r=1}^M \phi_{ij_r}(x)
$$

 $\phi_{ij_{r}(\mathsf{x})}$ is distributed with some distribution $D_{\mathsf{x},i}$, with a mean $\mu_{\phi(\mathsf{x}),i}$ and a standard deviation $\sigma_{\phi(x),i}$ which depend on the boundary ∂B_i

Two-point estimator $C_{\delta x}$ at site x $c_2(\delta; x)_i = \Phi_i(x)\Phi_i(y);$ 1 N \sum i $c_2(\delta; x)_i$ where $x \in \Lambda_1$, $y \in \Lambda_2$, $\delta = y - x$

As $N \to \infty$, $\frac{1}{N}$ $\frac{1}{N}\sum_i \mu_{\phi({\sf x}),i} \to \bar\phi$ and ${\sf C}_{\delta,{\sf x}} \to {\sf C}_{2,\textit{phys}}$ (Multilevel is ${\sf unbiased})$

Correlator Errors

Standard deviation of estimator depends on proximity of x to boundary.

Stanard Deviation of estimator $\sigma_{\mathsf{c}_{\delta,\mathsf{x}}}^2$ at x

$$
\sigma_{c_{\delta,x}}^2 = \frac{1}{N} \text{Var}(\mu_{\phi(x)\phi(y)}) + \frac{1}{NM} \left(E(\mu_{\phi(x)}^2 \sigma_{\phi(y)}^2 + \mu_{\phi(y)}^2 \sigma_{\phi(x)}^2) \right) + \frac{1}{NM^2} E(\sigma_{\phi(x)}^2 \sigma_{\phi(y)}^2).
$$

where Var and E at boundary level, μ and σ at the sub-lattice level.

See also (García Vera, 2017).

Weighted average of two-point correlators

$$
C_2(\delta) = \sum_{x} W(x) c_{\delta,x} \sim N(C_{2,real}, \mathbf{W} \cdot Cov \cdot \mathbf{W})
$$

where $\sum_{x} W(x) = 1$

Best and Worst Case Scenarios

We compare to a **computationally equivalent** single-level algorithm, with $N \times M$ configurations.

Single Level Scaling $\sigma_{\bm{s}} \propto \frac{1}{\sqrt{\Lambda}}$ √ NM

Performance of the multilevel algorithm depends on the correlation of the field insertions to the boundary.

Multilevel Scaling

$$
\sigma_m \propto \frac{1}{\sqrt{N M^2}} \approx \frac{\sigma_s}{\sqrt{M}}
$$
 (Best Case)

$$
\sigma_m \propto \frac{1}{\sqrt{N}} \approx \sqrt{M} \sigma_s
$$
 (Worst Case)

4日下

 \leftarrow \leftarrow \leftarrow

 \rightarrow \equiv \rightarrow \rightarrow

 QQ

Numerical Results $L = 32, N = 500, M = 500$

 \triangleright Multilevel is more effective when the correlation length, ξ , is shorter.

- \triangleright Multilevel is more effective for the longest two-point separations, δ .
- \triangleright Signal-to-noise is worst for large δ so this works well

Scaling

Hypothesis: Performance of the algorithm is invarient under a rescaling of the system $(L \to \alpha L, \Delta \delta \to \alpha \Delta \delta, \xi \to \alpha \xi)$

Can we make a prediction of these curves without even running a simulation?

The Model

- \triangleright Field insertions are random variables correlated to each other
- \triangleright Correlation between field insertions given by two-point function of slice-coordinates - e.g. $\langle \phi(x) \phi(x + \delta) \rangle = A e^{\frac{-\delta}{\xi}}$.
- \triangleright Field insertions in different sub-regions correlated indirectly through the boundary
- \triangleright This is a leading order approximation
- \triangleright Implemented in Python

Model Results

- \triangleright Excellent agreement between model and observed data including at the crossover point
- \triangleright \triangleright \triangleright Large ξ outside the range of validity of the [m](#page-12-0)o[de](#page-14-0)l

- \triangleright Multilevel performance has been explored for a model system and predicted in a model independent way
- \triangleright The algorithm performs excellently for long-distance correlators and when the correlation length is small
- \triangleright This performance was predicted well by modelling fields as statistically correlated random variables
- \triangleright This project could be extended by investigation of more complicated spectra and by comparison to multilevel studies in QCD, and other theories where multilevel is being applied.

Thank you for listening!

 Ω

 \rightarrow 3 \rightarrow 3 \rightarrow