A new technique for solving the freezing problem in the complex Langevin simulation of 4D SU(2) gauge theory with a theta term

Akira Matsumoto¹, Kohta Hatakeyama², Mitsuaki Hirasawa², Masazumi Honda³, Yuta Ito⁴, Jun Nishimura¹², Atis Yosprakob¹

SOKENDAI¹, KEK², YITP³, Tokuyama College⁴

@ LATTICE 2021 (online)

Gauge theory with a θ term

 $rightarrow \theta$ term: topological property of the gauge theory, nonperturbative

$$S_{\theta} = -i\theta Q = -\frac{i\theta}{32\pi^2} \int d^4 x \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

- strong CP problem of QCD The experimental bound of θ is extremely small: $|\,\theta\,|<10^{-10}$
- nontrivial phase structure of 4D SU(2) YM around $\theta = \pi$ predicted by the 't Hooft anomaly matching

Numerical study of the θ term

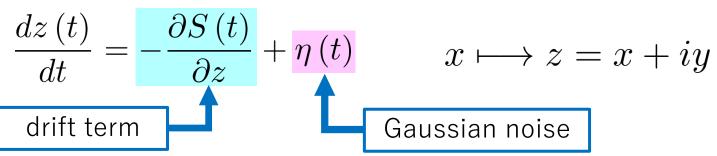
Monte Carlo simulation of the lattice gauge theory for $\theta \neq 0$

- θ term is purely imaginary \rightarrow the action is complex
 - \rightarrow sign problem
- various approaches...
 - Complex Langevin method [L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty (2014)]
 - Density of state method [C. Gattringer, O. Orasch (2020)] (talk at LATTICE 2021)
 - Tensor renormalization group [Y. Kuramashi, Y. Yoshimura (2020)]
 - Lefschetz thimble method
 - etc...

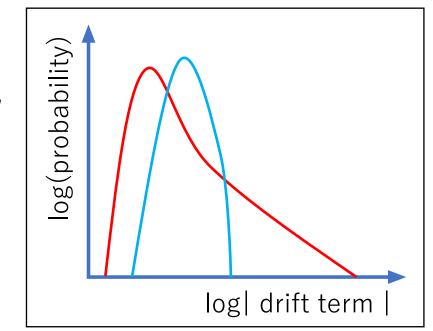
Complex Langevin method

complex Langevin method (CLM) [G. Parisi (1983)] [J. R. Klauder (1983)]

- Langevin equation: fictitious time evolution of dynamical variables
- real variable \rightarrow complex variable



- do not use "probability" \rightarrow sign problem
- condition required to be satisfied



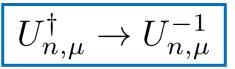
The distribution of the drift term should falls off exponentially or faster.

[K. Nagata, J. Nishimura, S. Shimasaki (2016)]

CLM for the lattice gauge theory

• discretized complex Langevin equation for the link variables

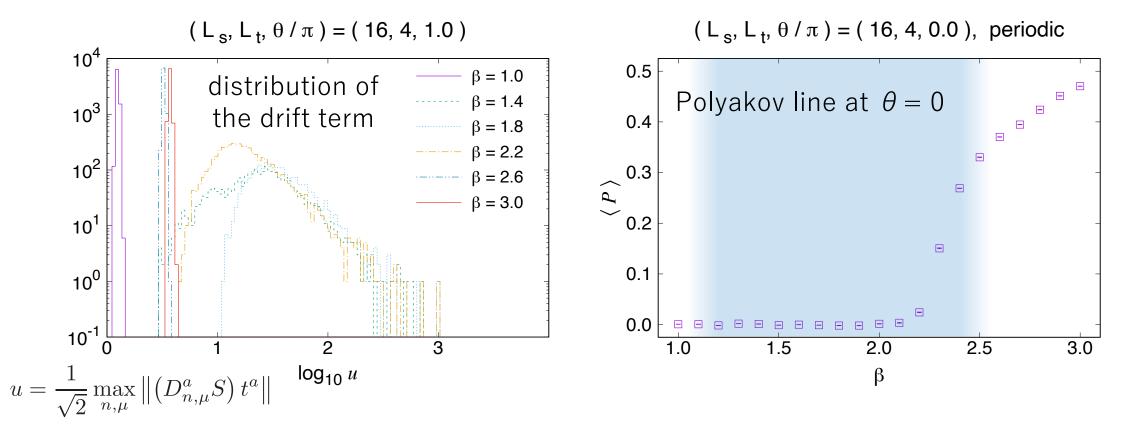
• gauge group is extended: $SU(2) \rightarrow SL(2, \mathbb{C})$



- drift term and observables have to respect holomorphicity
- gauge cooling
 - gauge transformation to keep the link variable close to unitary
 - doesn't affect gauge invariant observables
 - [E. Seiler, D. Sexty, I.-O. Stamatescu (2013)] [K. Nagata, J. Nishimura, S. Shimasaki (2016)]

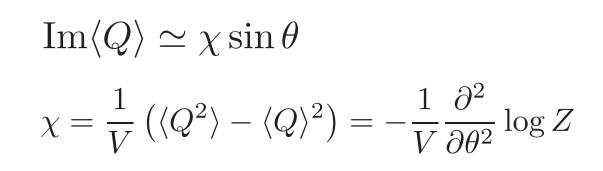
Convergence of CLM

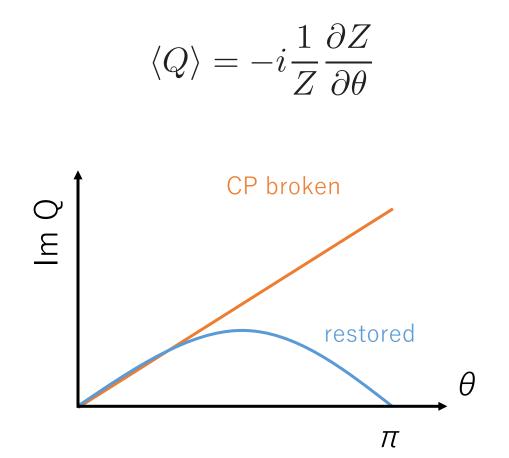
• The condition for the correct convergence is satisfied around $\beta < 1.1$ and $\beta > 2.4$.



CP symmetry at $\theta = \pi$

- In the high temperatures region, CP is expected to be restored at $\theta = \pi$.
- The topological charge is CP odd. $\rightarrow \langle Q \rangle = 0$ if CP is restored
- dilute instanton gas approximation



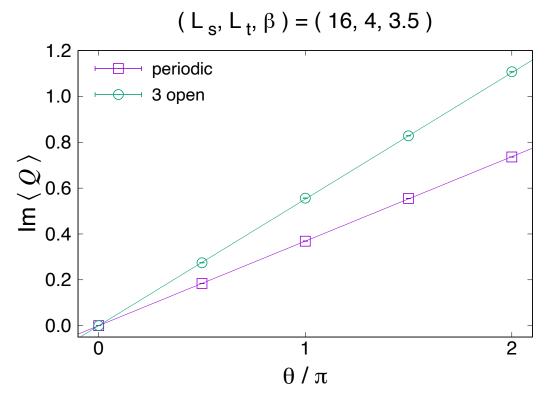


Expectation value of Q

We found Im $Q \propto \theta$ for large β with periodic b.c. and open b.c.

- 2π periodicity is absent in both cases.
- open b.c. : Q is not an integer
- periodic b.c. : topology freezing
 - \rightarrow large β is difficult

Topology freezing does not occur for relatively small β ...



Stout smearing

- The topological charge is contaminated by UV fluctuation on the coarse lattice.
- \rightarrow Recover the topological property by smoothing the gauge field

Stout smearing [C. Morningstar, M. Peardon (2004)]

$$U_{n,\mu}^{(k+1)} = e^{iY_{n,\mu}} U_{n,\mu}^{(k)} \qquad iY_{n,\mu} = -\frac{1}{2} \left(J_{n,\mu} - \frac{1}{N} \operatorname{Tr} [J_{n,\mu}] \right)$$
$$J_{n,\mu} = \sum_{\nu(\neq\mu)} \rho_{\mu\nu} \left[U_{n,\mu} \left(\checkmark + \checkmark \right) - \left(\uparrow + \checkmark \right) U_{n,\mu}^{-1} \right]$$

 $\rho_{\mu\nu}$: step size for smearing

Stout smearing for CLM

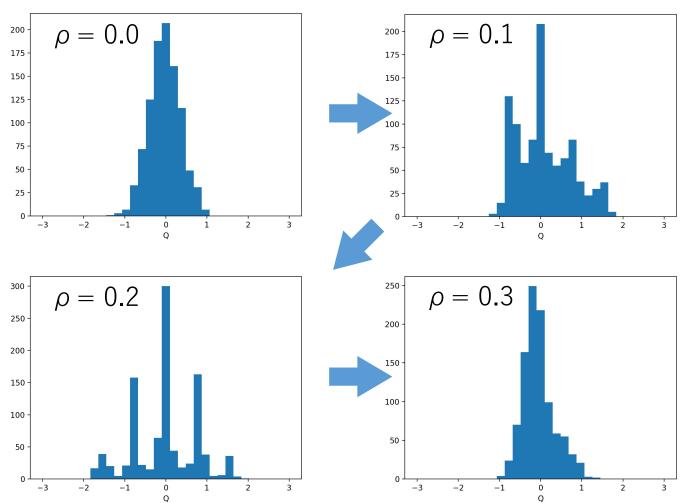
• The topological charge is calculated from smeared configuration.

 $S = S_g[U] - i\theta Q[U^{(n_\rho)}] \qquad \qquad \mathbf{n}_\rho: \text{\# of steps in smearing}$

- We use stout smearing also for calculation of the drift term so that the dynamics can reflect the topological property.
 - $-i\theta D^a_{n,\mu}Q[U^{(n_\rho)}(U)]$
- The link variable remains in SL(N,C).
- The drift term is holomorphic.
 - ※ Implement stout smearing to CLM for finite density QCD [D. Sexty (2019)]

Effect of smearing

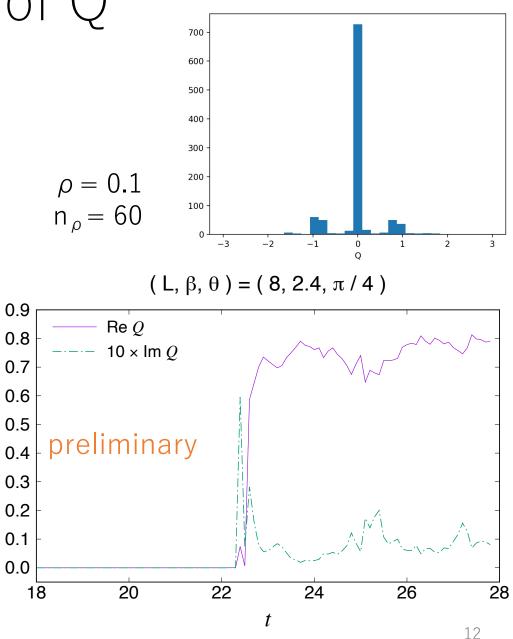
- distribution of Q
 - L = 8, β = 2.4, θ = 0.0 # of steps : n_{\rho} = 20 step size : $\rho_{\mu\nu} = \rho$
- Q approaches an integer for specific combinations of (ρ, n_{ρ}) .
 - → sensitive to the parameters



Behavior of Q

Langevin time evolution of the topological charge for $\theta \neq 0$

- ImQ ~ 0 unless ReQ changes
- Contribution of Q \neq 0 sectors \rightarrow nontrivial theta dependence
- Jump of ReQ \rightarrow singular drift $D^a_{n,\mu}Q[U^{(n_\rho)}(U)] \gg 1$
- Further tuning of (ρ, n_{ρ}) is necessary.



Summary

- We use the complex Langevin method to simulate 4D SU(2) gauge theory with a θ term, avoiding the sign problem.
- CLM works for $\beta < 1.1$ and $\beta > 2.4$, but 2π periodicity of θ cannot be observed.
- We implement stout smearing to calculation of Q and the drift term of CLM. \rightarrow Q approaches an integer.
- We need to tune the parameters of smearing to stabilize the behavior of the drift term.

Thank you!