Motiva O	tion fermionic PEPS 00	Algorithm OO	Results 000	Summary O
	The Hubbard	Model with fermio	nic Tensor Netw	orks
	;	rXiv:2106.13583 [physics.	comp-ph]	
	Manuel Schneider, Joha	ın Ostmeyer, Karl Jansen, manuel.schneider@de	, Thomas Luu, and Car esy.de	rsten Urbach
		DESY Zeuthen NIC group		
		Humboldt-Universität zu B Faculty of Mathematics and Natur Department of Physics	erlin ral Sciences	

Berlin, July 30, 2021

Motivation		
•		
Motivation		

- ▶ Hubbard Model on the Honeycomb Lattice is a model for Graphene
- ▶ Phase Transition from Semi-Metallic to Mott-Insulator \rightarrow fast transistors [Han *et al.* 2014]

Motivation		
•		
Motivation		

- ▶ Hubbard Model on the Honeycomb Lattice is a model for Graphene
- ▶ Phase Transition from Semi-Metallic to Mott-Insulator \rightarrow fast transistors [Han *et al.* 2014]

$$H = -\kappa \sum_{\langle x,y \rangle,s} c_{x,s}^{\dagger} c_{y,s} + \frac{U}{2} \sum_{x} q_{x}^{2} + \mu \sum_{x,s} \left(c_{x,s}^{\dagger} c_{x,s} - \frac{1}{2} \right)$$

Motivation		
•		
Motivation		

- Hubbard Model on the Honeycomb Lattice is a model for Graphene
- ▶ Phase Transition from Semi-Metallic to Mott-Insulator → fast transistors [Han et al. 2014]

$$H = -\kappa \sum_{\langle x, y \rangle, s} c_{x,s}^{\dagger} c_{y,s} + \frac{U}{2} \sum_{x} q_{x}^{2} + \mu \sum_{x,s} \left(c_{x,s}^{\dagger} c_{x,s} - \frac{1}{2} \right)$$

- At $\mu = 0$: good results with HMC [Johann Ostmeyer, Tue, 6am], [Ostmeyer *et al.* 2021]
- ▶ $\mu \neq 0$: sign problem
- Tensor Network methods do not suffer from the sign problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

fermionic PEPS		
•o		

Projected Entangled Pair States (PEPS) [Orús 2014; Verstraete & Cirac 2004]

$$|\psi\rangle = \sum_{s_1...s_N} \underbrace{\mathcal{A}_{s_1,s_2,...,s_N}}_{4^N \text{coefficients}} |s_1\rangle \otimes |s_2\rangle \otimes \cdots \otimes |s_N\rangle$$

	fermionic PEPS			
0	•0	00	000	0

Projected Entangled Pair States (PEPS) [Orús 2014; Verstraete & Cirac 2004]

$$|\psi\rangle = \sum_{s_1...s_N} \underbrace{\mathcal{A}_{s_1,s_2,...,s_N}}_{4^N \text{coefficients}} |s_1\rangle \otimes |s_2\rangle \otimes \cdots \otimes |s_N\rangle$$

$$\approx \sum_{s_1...s_N} \sum_{\alpha_1...\alpha_N=1}^D A^1_{s_1;\alpha_1} A^2_{s_2;\alpha_1,\alpha_2} \cdots A^N_{s_N;\alpha_{N-1}} \ket{s_1} \otimes \ket{s_2} \otimes \cdots \otimes \ket{s_N}$$

	fermionic PEPS			
0	•0	00	000	0

Projected Entangled Pair States (PEPS) [Orús 2014; Verstraete & Cirac 2004]

$$|\psi\rangle = \sum_{s_1...s_N} \underbrace{\mathcal{A}_{s_1,s_2,...,s_N}}_{4^N \text{coefficients}} |s_1\rangle \otimes |s_2\rangle \otimes \cdots \otimes |s_N\rangle$$

$$\approx \sum_{s_1...s_N} \sum_{\alpha_1...\alpha_N=1}^D A^1_{s_1;\alpha_1} A^2_{s_2;\alpha_1,\alpha_2} \cdots A^N_{s_N;\alpha_{N-1}} |s_1\rangle \otimes |s_2\rangle \otimes \cdots \otimes |s_N\rangle$$

fermionic PEPS		
0•		

$$c_i^{\dagger}c_k^{\dagger} = -c_k^{\dagger}c_i^{\dagger}$$

fermionic PEPS		
00		

$$c_i^\dagger c_k^\dagger = -c_k^\dagger c_i^\dagger$$

define parity on all links

fermionic PEPS		
00		

$$c_i^\dagger c_k^\dagger = -c_k^\dagger c_i^\dagger$$

- define parity on all links
- tensors have even parity

イロト イヨト イヨト イヨト

三日 のへの

fermionic PEPS		
00		

$$c_i^{\dagger}c_k^{\dagger} = -c_k^{\dagger}c_i^{\dagger}$$

▶ 《 토 ▶ 토| ㅌ 곗 < (~ July 30, 2021 <u>4 / 10</u>

fermionic PEPS		
00		

$$c_i^{\dagger}c_k^{\dagger} = -c_k^{\dagger}c_i^{\dagger}$$

	Algorithm	
	••	

► Fix bond dimension *D*

	Algorithm	
	••	

- ► Fix bond dimension *D*
- Initialize PEPS randomly

	Algorithm	
	••	

- ► Fix bond dimension *D*
- Initialize PEPS randomly
- Trotter-decomposed imaginary time evolution

三日 のへで

	Algorithm	
	•0	

- ► Fix bond dimension *D*
- Initialize PEPS randomly
- Trotter-decomposed imaginary time evolution
- Local updates

三日 のへで

	Algorithm	
	•0	

- ► Fix bond dimension *D*
- Initialize PEPS randomly
- Trotter-decomposed imaginary time evolution
- Local updates
- Contract network to calculate expectation values

三日 のへの

	Algorithm	
	00	

boundary MPS effect

 $D = 12, L = 12 \times 6$ hexagonal, $\kappa = 1, U = 2, \mu = 0.1, B = 0.01$ 10^{0} ----Runtime $\propto N\chi^3 D^4$ $\begin{array}{c|c} & 10^{-1} \\ \hline & 10^{-2} \\ \hline & 10^{-2} \\ \hline & 10^{-3} \\ \hline & 10^{-3} \\ \hline & 10^{-4} \\ \hline & 10^{$ Memory $\propto \chi^2 D^4$ × × χ × × ô × × × 10^{-5} 10² 10¹ χ

イロト イヨト イヨト イヨト

χ

	Results	
	000	

 3×4 hex. lattice, U = 2

Manuel Schneider

	Results	
	000	

Simulations with chemical potential

	Results	
	000	

Simulations with chemical potential

		Summary
		•
Summary		

arXiv:2106.13583 [physics.comp-ph]

Outlook:

- explore phase diagram
- ▶ study exciting new physics at $\mu \neq 0$

- Corboz, P., Orús, R., Bauer, B. & Vidal, G. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states. *Phys. Rev. B* 81, 165104 (16 2010).
- Han, S.-J., Valdes, A., Oida, S., Jenkins, K. & Haensch, W. Graphene radio frequency receiver integrated circuit. *Nature communications* **5**, 3086 (Jan. 2014).
- **Orús**, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. *Annals of Physics* **349**, 117–158. ISSN: 0003-4916 (2014).
- Ostmeyer, J. *et al.* The Antiferromagnetic Character of the Quantum Phase Transition in the Hubbard Model on the Honeycomb Lattice. *arXiv e-prints*, arXiv:2105.06936. arXiv: 2105.06936 [cond-mat.str-el] (May 2021).
- Schneider, M., Ostmeyer, J., Jansen, K., Luu, T. & Urbach, C. Simulating both parity sectors of the Hubbard Model with Tensor Networks. arXiv: 2106.13583 [physics.comp-ph] (2021).
- Verstraete, F. & Cirac, J. I. Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions. arXiv e-prints, cond-mat/0407066. arXiv: cond-mat/0407066 [cond-mat.str-el] (July 2004).