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Motivation
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Sign problem
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➢ Goal: Numerically access observables

with

➢ Standard Monte Carlo algorithms fail, with one exception: Langevin dynamics

Sign Problem

No probability distribution!➢ Problem:



Complex Langevin dynamics

What is complex Langevin dynamics:
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➢ A sampling process that allows the numerical computation of complex action problems.

Observables

Update rules (CLE)

G. Parisi, Phys. Lett. B 131, 393–395 (1983)

Klauder, Recent Developments in High-Energy Physics (1983) pp. 251–281.



Complex Langevin dynamics

Problems (model-specific):

➢ Potential convergence to unphysical fixed points / solutions

➢ Numerical instabilities
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Big advantage:

➢ Appeal of general applicability (model-independent)

Ambjørn and S.-K. Yang, Phys. Lett. B 165, 140–146 (1985)

Salcedo, Phys. Rev. D 94, 114505 (2016)

E. Seiler, EPJ Web Conf. 175, 01019 (2018)

Nishimura and S. Shimasaki, Phys. Rev. D 92, 011501 (2015)

Nagata et al., J. High Energ. Phys. 2018, 4 (2018)

Hayata et al., Nucl. Phys. B 911, 94–105 (2016)



Complex Langevin dynamics

Theoretical understanding:

➢ Rather heuristic derivation from Langevin dynamics

➢ Subsequent theoretical justification and derivation of criteria for correctness 
based on Fokker-Planck equation

➢ No thorough understanding in terms of a Markov chain Monte Carlo algorithm
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Key question:

➢ How to define a sampling process based on the first principles of a Markov chain 

Monte Carlo algorithm (detailed-balance equation) for complex action problems?

Sign Problem

Aarts, J. High Energ. Phys. 2008, 018–018 (2008)
Aarts et al., Phys. Rev. D 81, 054508 (2010).



Key insights
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Key insights for a possible sampling process
➢ Reformulation as a mean over several 

integrals in the complex plane
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Key insights for a possible sampling process
➢ Mixing the sampling process of each integral allows 

the definition of real-valued transition probabilities
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➢ Basis for a numerical sampling scheme in the complex plane

➢ Key for an interpretation as a 
Markov chain Monte Carlo algorithm



Implications
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Main Results
➢ Mathematical framework for a Markov chain Monte Carlo sampling algorithm for 

complex action problems based on four constraints:
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Adapted detailed-balance equation

Infinitesimally small step sizes in 
imaginary direction Equilibrium

➢ Substitution sampling algorithm



Main Results

➢ allows a novel mathematically well-founded derivation of complex Langevin dynamics 

as a Markov chain Monte Carlo algorithm
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The substitution sampling algorithm

➢ is in strong contrast to the standard, rather heuristic derivation from Langevin dynamics



Main Results

➢ complex Langevin-like algorithms (similar to CLD)
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➢ Why is it interesting to take a closer look at a Markov chain 

Monte Carlo framework for complex action problems?

Proof of concept of the mathematical framework by the derivation of

➢ another algorithm called substitution Hamiltonian 
Monte Carlo algorithm (only for real actions)



Conclusion and Outlook
Appeal of a Markov chain Monte Carlo algorithm for complex 
action problems:

➢ Explicit access to the underlying sampling process

➢ Finite step sizes in configuration space

➢ Potential solution to the problem of wrong convergence
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Possible future developments:

➢ Derivation of novel sampling algorithms for complex action problems

➢ Potential improvement of the presented sampling framework by more theoretical 

insights



Thank you!
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