Towards Sampling Complex Actions

Kades, Gärttner, Gasenzer, Pawlowski, arXiv:2106.09367

Lukas Kades

- Heidelberg University -

July 30, 2021

Motivation

Sign problem

Goal: Numerically access observables

$$\langle \mathcal{O}(\phi) \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \mathcal{O}(\phi) e^{-S(\phi)}$$

Re $[\exp(-S(\phi))]$

with $S(\phi) \in \mathbb{C}$

Problem:

No probability distribution!

Standard Monte Carlo algorithms fail, with one exception: Langevin dynamics

$\langle \mathcal{O}(\phi) \rangle_{\rho} = \int_{a}^{b} d\phi \, \mathcal{O}(\phi) \rho(\phi)$

Complex Langevin dynamics

What is complex Langevin dynamics:

G. Parisi, Phys. Lett. B 131, 393-395 (1983)

Klauder, Recent Developments in High-Energy Physics (1983) pp. 251–281.

> A sampling process that allows the numerical computation of complex action problems.

Update rules (CLE)

$$\frac{\mathrm{d}\phi_x}{\mathrm{d}\tau} = -\frac{\delta S_{\mathrm{Re}}(\phi)}{\delta \phi} \bigg|_{\phi_x + i\phi_y} + \eta$$

$$\frac{\mathrm{d}\phi_y}{\mathrm{d}\tau} = -\frac{\delta S_{\mathrm{Im}}(\phi)}{\delta \phi} \bigg|_{\phi_x + i\phi_y}$$

Observables

$$P(\phi_x, \phi_y; \theta)$$

Complex Langevin dynamics

Big advantage:

Appeal of general applicability (model-independent)

Problems (model-specific):

- Potential convergence to unphysical fixed points / solutions
- Numerical instabilities

Ambjørn and S.-K. Yang, Phys. Lett. B 165, 140–146 (1985) Nishimura and S. Shimasaki, Phys. Rev. D 92, 011501 (2015) Hayata et al., Nucl. Phys. B 911, 94-105 (2016) Salcedo, Phys. Rev. D 94, 114505 (2016) E. Seiler, EPJ Web Conf. 175, 01019 (2018) Nagata et al., J. High Energ. Phys. 2018, 4 (2018)

Complex Langevin dynamics

Theoretical understanding:

Rather heuristic derivation from Langevin dynamics

 $\sum_{\substack{0.5 \ -2 \ -2 \ -1}} \frac{1}{1} \frac{1}{2}$

1.0

- Subsequent theoretical justification and derivation of criteria for correctness based on Fokker-Planck equation

 Aarts, J. High Energ. Phys. 2008, 018–018 (2008)

 Aarts et al., Phys. Rev. D 81, 054508 (2010).
- ➤ No thorough understanding in terms of a Markov chain Monte Carlo algorithm

Key question:

How to define a sampling process based on the first principles of a Markov chain Monte Carlo algorithm (detailed-balance equation) for complex action problems?

Key insights

$$\langle \mathcal{O}(\phi) \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \mathcal{O}(\phi) e^{-S(\phi)}$$

Key insights for a possible sampling process

Reformulation as a mean over several integrals in the complex plane

$$\langle \mathcal{O}(\phi) \rangle_{\rho} = \int_{a}^{b} d\phi \, \mathcal{O}(\phi) \rho(\phi)$$

$$\phi = \phi(\phi_x) = \phi_x + i\phi_{y,i}, \quad d\phi = d\phi_x$$

$$\langle \mathcal{O}(\phi) \rangle_{\rho} = \frac{1}{N} \sum_{i=1}^{N} \int_{a-i\phi_{y,i}}^{b-i\phi_{y,i}} \mathrm{d}\phi_{x} \, \mathcal{O}(\phi_{x} + i\phi_{y,i}) \rho(\phi_{x} + i\phi_{y,i})$$

$$\langle \mathcal{O}(\phi) \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \mathcal{O}(\phi) e^{-S(\phi)}$$

Key insights for a possible sampling process

Mixing the sampling process of each integral allows the definition of real-valued transition probabilities

> Key for an interpretation as a Markov chain Monte Carlo algorithm

Basis for a numerical sampling scheme in the complex plane

$$\langle \mathcal{O}(\phi) \rangle_{\rho} = \frac{1}{MN} \sum_{i=1}^{MN} \mathcal{O}(\phi_{x;i} + i\phi_{y;i})$$

Implications

$$\langle \mathcal{O}(\phi) \rangle_{\rho} = \frac{1}{MN} \sum_{i=1}^{MN} \mathcal{O}(\phi_{x;i} + i\phi_{y;i})$$

Main Results

- Mathematical framework for a Markov chain Monte Carlo sampling algorithm for complex action problems based on **four constraints**:
 - 1. Satisfaction of the following detailed-balance equation for a fixed hidden state w

tion for a fixed hidden state
$$m$$
.

Adapted detailed-balance equation
$$= p(v', w)g(w'|v, v', w)T(v|v', w). \tag{37}$$

2. The Infinitesimally small step sizes in imaginary direction

3. The
$$_{1}\langle \mathcal{O}(\phi)\rangle_{\rho} = \int_{a-i\phi_{y}}^{b-i\phi_{y}} d\phi_{x} \,\mathcal{O}(\phi_{x}+i\phi_{y})\rho(\phi_{x}+i\phi_{y})$$
 the b den s ple, i the i $\langle \mathcal{O}(\phi)\rangle_{\rho} = \int_{a}^{b} d\phi_{x} \,\mathcal{O}(\phi_{x}+i\phi_{y})\rho(\phi_{x}+i\phi_{y})$

4. The distribution p(v, w) and the transition probabilities T and g need to satisfy " onstraint, cf. Eq. (26),

$$p(v',w',\tau) \stackrel{!}{=} \int_{J} \cdots \times p(v,w,\tau) g(w'|v',v,w) T(v'|v,w) . \tag{38}$$

Substitution sampling algorithm

Main Results

The substitution sampling algorithm

allows a novel mathematically well-founded derivation of complex Langevin dynamics as a Markov chain Monte Carlo algorithm

$$\frac{\mathrm{d}\phi_x}{\mathrm{d}\tau} = -\frac{\delta S_{\mathrm{Re}}(\phi)}{\delta \phi} \bigg|_{\phi_x + i\phi_y} + \eta$$

$$\frac{\mathrm{d}\phi_y}{\mathrm{d}\tau} = -\frac{\delta S_{\mathrm{Im}}(\phi)}{\delta \phi} \bigg|_{\phi_x + i\phi_y}$$

> is in strong contrast to the standard, rather heuristic derivation from Langevin dynamics

Main Results

Proof of concept of the mathematical framework by the derivation of

- complex Langevin-like algorithms (similar to CLD)
- another algorithm called substitution Hamiltonian
 Monte Carlo algorithm (only for real actions)

Why is it interesting to take a closer look at a Markov chain Monte Carlo framework for complex action problems?

Conclusion and Outlook

Appeal of a Markov chain Monte Carlo algorithm for complex action problems:

- Explicit access to the underlying sampling process
- Finite step sizes in configuration space
- Potential solution to the problem of wrong convergence

Ma v chain Monte rithms for ns Comple Langer Metr algorithm

Possible future developments:

- > Derivation of novel sampling algorithms for complex action problems
- Potential improvement of the presented sampling framework by more theoretical insights

Thank you!