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Motivation
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> Goal: Numerically access observables

©6) = [ Ps0(@)e®

with S(¢) € C /

> Problem: No probability distribution!

> Standard Monte Carlo algorithms fail, with one exception: Langevin dynamics
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Complex Langevin dynamics

G. Parisi, Phys. Lett. B 131, 393-395 (1983)
What iS Complex LangeVin dynamiCS' Klauder, Recent Developments in High-Energy Physics (1983) pp. 251-281.

> A sampling process that allows the numerical computation of complex action problems.
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Complex Langevin dynamics
Big advantage: N o
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> Appeal of general applicability (model-independent)
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Problems (model-specific):

> Potential convergence to unphysical fixed points / solutions

Ambjgrn and S.-K. Yang, Phys. Lett. B 165, 140—-146 (1985)
> Numerical instabilities Nishimura and S. Shimasaki, Phys. Rev. D 92, 011501 (2015)

Hayata et al., Nucl. Phys. B 911, 94—105 (2016)

Salcedo, Phys. Rev. D 94, 114505 (2016)

E. Seiler, EPJ Web Conf. 175, 01019 (2018)

Nagata et al., J. High Energ. Phys. 2018, 4 (2018) 5
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Complex Langevin dynamics
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Theoretical understanding:

> Rather heuristic derivation from Langevin dynamics

> Subsequent theoretical justification and derivation of criteria for correctness

based On Fokker_Planck equation Aarts, J. High Energ. Phys. 2008, 018-018 (2008)
Aarts et al., Phys. Rev. D 81, 054508 (2010).

> | No thorough understanding in terms of a Markov chain Monte Carlo algorithm

Key question: \

> How to define a sampling process based on the first principles of a Markov chain

Monte Carlo algorithm (detailed-balance equation) for complex action problems?



Key Insights
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Key insights for a possible sampling process

> Reformulation as a mean over several

integrals in the complex plane S ————————. Z_)gb
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Key insights for a possible sampling process

> Mixing the sampling process of each integral allows
the definition of|real-valued transition probabilities

/

> Key for an interpretation as a
Markov chain Monte Carlo algorithm //

> Basis for a numerical sampling scheme in the complex plane
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Implications
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Main Results

| MN
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> Mathematical framework for a Markov chain Monte Carlo sampling algorithm for
complex action problems based on four constraints:

1. Satisfaction of the following detailed-balance ecua-
tion for a fixed hidden state 2 ation
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4. The distribution p(v,w) and the transition proba-

bilities T' and ¢g need to satisfv **  onstraint, cf.
Eq. (26) .
; e \um
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x p(v,w, ) g(w'|[v',v,w)T(V'|v,w) . (38)

> Substitution sampling algorithm
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Main Results

The substitution sampling algorithm

> allows a novel mathematically well-founded derivation of complex Langevin dynamics

as a Markov chain Monte Carlo algorithm
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> is in strong contrast to the standard, rather heuristic derivation from Langevin dynamics



Main Results

Proof of concept of the mathematical framework by the derivation of

> complex Langevin-like algorithms (similar to CLD)

> another algorithm called substitution Hamiltonian -
Monte Carlo algorithm (only for real actions) ok

> Why is it interesting to take a closer look at a Markov chain

Monte Carlo framework for complex action problems?
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Conclusion and Outlook

Appeal of a Markov chain Monte Carlo algorithm for complex ain Monte
action problems: rithms for

> Explicit access to the underlying sampling process -

algori

> Finite step sizes in configuration space

> Potential solution to the problem of wrong convergence

Possible future developments:
> Derivation of novel sampling algorithms for complex action problems

> Potential improvement of the presented sampling framework by more theoretical

insights 14



Thank you!



