Pion and Kaon form factors using twisted-mass fermions

Constantia Alexandrou ² ³ Joseph Delmar¹

Simone Bacchio ² ³

Ian Cloët ⁴

Martha Constantinou ¹

³The Cyprus Institute

Kyriakos Hadjiyiannakou ^{2 3} Giannis Koutsou ² Colin Lauer ^{1 4}

Alejandro Vaquero ⁵

¹Temple University

²University of Cyprus

⁴Argonne National Laboratory

⁵University of Utah

Abstract

We present a calculation of the connected contributions to the pion and kaon scalar, vector and tensor form factors. We use an ensemble of $N_f = 2 + 1 + 1$ maximally twisted mass fermions with clover improvement, with a pion mass of 260 MeV, and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the lattice has a spatial extent of 3 fm. We analyze several values of the source-sink time separation to eliminate excited-states effects. The scalar and tensor form factors are converted to the $\overline{\rm MS}$ scheme at a scale of 2 GeV. We also address the effect of SU(3) flavor symmetry breaking.

Motivation

- Form factors (FFs) give access to properties describing hadron structure
- Scalar FFs: exploration of interplay between EHM mechanism and Higgs boson interaction
- Vector FFs: electromagnetic properties
- Tensor FFs: useful for beyond the Standard model studies
- An important QCD property is spontaneous chiral symmetry breaking (SCSB)
- QCD Lagrangian would have full chiral symmetry
- Would give rise to massless Goldstone bosons (i.e. pions and kaons)
- Mass difference of pion and kaon: interplay between QCD dynamics and quark-mass effect
- Limited experimental data
- Pion less studied then the nucleon. Kaon structure is very limitedly studied

Lattice Setup

• Ensemble of N_f = 2 + 1 + 1 twisted mass fermions

Parameters							
Ensemble	β	<i>a</i> [fm]	volume $L^3 \times T$	N_f	$m_{\pi} [{ m MeV}]$	Lm_{π}	L [fm]
cA211.32	1.726	0.093	$32^{3} \times 64$	u, d, s, c	260	4	3.0

 Each matrix element decomposes to one form factor (spin-0 mesons) with a normalization $C=1/\sqrt{4E(p)E(p')}$ and $E(p)=\sqrt{m^2+p^2}$:

$$\langle p'|\mathcal{O}_S|p\rangle = C F_S^{M,q}, \ \langle p'|\mathcal{O}_V^{\mu}|p\rangle = -2i C P^{\mu} F_V^{M,q}, \ \langle p'|\mathcal{O}_T^{\mu\nu}|p\rangle = i C \frac{(P^{\mu}\Delta^{\nu} - P^{\nu}\Delta^{\mu})}{m_M} F_T^{M,q}$$

• We explore both rest and boosted frame $(p = 2\pi \mathbf{n}'/L)$ for a wide range of Q^2

	Statistics						
$\mathbf{n'}$	t_s/a	$N_{ m confs}$	$N_{ m src}$	$N_{p'}$	Total statistics		
(O,O,O)	12, 14, 16, 18, 20, 24	122	16	1	1,952		
$(\pm 1, \pm 1, \pm 1)$	12	122	16	8	15,616		
$(\pm 1, \pm 1, \pm 1)$	14, 16, 18	122	72	8	70,272		

• Study of excited-states effects: plateau fit (1.12-2.23 fm) and 2-state fit

Results

- Rest frame: signal up to 0.5 GeV² $(|Q_{\rm max}|/m_{\pi} \sim 2.5)$
- Boosted frame: signal up to 3 GeV² $(|Q_{\rm max}|/E_0 \sim 2)$
- FFs in rest and boosted frame compatible
- Scalar FF only in rest frame (increased gauge noise)
- Tensor FF suppressed by quark mass (chirality flip on a quark line)
- Excited states contamination: - suppressed for $t_s \ge 1.3$ fm in vector FF
- scalar and tensor FFs suffer from severe excited states ($t_s \ge 1.7$ fm)
- 2-state fit employed for final results

Kaon

 $Q^2({
m GeV^2})$

- Similar conclusions for kaon, but signal up to 0.8 GeV² in rest frame
- Excited states effects negligible for $Q^2 > 0.2 \text{ GeV}^2$.
- 2-state fit used for final results

Radii

- Parameterizing the form factors allows extraction of the radius
- 1-parameter or 2-parameter fit for scalar and vector
- $F_T(0)$ not determined from lattice data (vanishing kinematic factor)
- Fits on rest and boosted frame combined

$$F^{\Gamma}(Q^2) = \frac{F^{\Gamma}(0)}{1 + \frac{Q^2}{\mathcal{M}_{\Gamma}^2}}, \qquad \langle r^2 \rangle^{\Gamma} = -\frac{6}{F^{\Gamma}(0)} \frac{\partial F^{\Gamma}(Q^2)}{\partial Q^2} \bigg|_{Q^2 = 0} = \frac{6}{M_{\Gamma}^2}.$$

Preliminary

$\langle r^2 \rangle_{S,1}^{\pi^u} (\mathrm{fm}^2)$	$\langle r^2 \rangle_{S,2}^{\pi^u} (\mathrm{fm}^2)$	$\langle r^2 \rangle_{V,1}^{\pi^u} (\mathrm{fm}^2)$	$\langle r^2 \rangle_{V,2}^{\pi^u} (\mathrm{fm}^2)$	$\langle r^2 \rangle_{T,2}^{\pi^u} (\mathrm{fm}^2)$
0.258(28)	0.258(28)	0.3105(47)	0.3276(54)	0.3533(97)
$\langle r^2 \rangle_{S,2}^{K^u} (\text{fm}^2)$	$\langle r^2 \rangle_{S,2}^{K^s} (\mathrm{fm}^2)$	$\langle r^2 \rangle_{V,2}^K (\mathrm{fm}^2)$	$\langle r^2 \rangle_{T,2}^{K^u} (\mathrm{fm}^2)$	$\langle r^2 \rangle_{T,2}^{K^s} (\mathrm{fm}^2)$
0.196(26)	0.0518(85)	0.2932(47)	0.4217(48)	0.2670(32)

- Results for scalar and vector radius lower than PDG value $(\langle r^2 \rangle^{\pi} = 0.434(4))$ fm², $\langle r^2 \rangle^K = 0.314(25)$ fm²) due to significant pion mass dependence
- Results agree with other lattice data at similar m_{π} (JLQCD, arXiv:0810.2590)

SU(3) Flavor Symmetry Breaking

- Results from parameterization on 2-state fit (Q^2 different in π and K)
- Tensor FF includes the ratio of the meson masses: $\mathcal{M} \equiv m_K/m_\pi$
- Up-quark contribution in pion and kaon similar in all FFs
- Up-quark contribution in kaon about 80% of strange quark as Q^2 increases

https://indi.to/3BhSR LATTICE 2021 jdelmar@temple.edu