## $x$-dependence reconstruction of pion and kaon PDFs from Mellin moments

## Colin Lauer

in collaboration with:
Constantia Alexandrou, Simone Bacchio, Ian Cloët, Martha Constantinou, Kyriacos Hadjiyiannakou, Giannis Koutsou

The 38th International Symposium on Lattice Field Theory July 28, 2021

T

## Overview

1 Motivation

2 Methodology

3 Mellin moments

4 Pion and Kaon PDF Reconstruction

5 Summary

## Overview

1 Motivation
2. Methodology
[3 Mellin moments

4 Pion and Kaon PDF Reconstruction

5 Summary

## Motivation

- Pion and kaon structure is important for answering open questions in hadron structure, e.g., SU(3) flavor symmetry breaking caused by heavier strange quark mass
- Accessing $x$-dependence of PDFs using Lattice QCD (LQCD):
- Novel methods: quasi-PDFs, pseudo-PDFs, current-current correlators, etc.
- From Mellin moments:

$$
\left\langle x^{n}\right\rangle=\int_{-1}^{1} d x x^{n} f(x)
$$

- Previously argued that it is unfeasible to reconstruct PDFs using lattice results for the Mellin moments, in particular, the large- $x$ behavior cannot be reliably understood [Detmold et al., arXiv:hep-lat/0108002], [Holt et al., RMP 82, 2991-3044 (2010)]
- We calculate moments directly from local operators without mixing with lower dimension operators so we attempt a reconstruction with our moment results


## Overview

## 1 Motivation

2 Methodology

3 Mellin moments

4 Pion and Kaon PDF Reconstruction

5 Summary

## Meson matrix elements

■ Moments under study:

- quark momentum fraction $\langle x\rangle$
- 2nd Mellin moment $\left\langle x^{2}\right\rangle$
- 3rd Mellin moment $\left\langle x^{3}\right\rangle$

- Matrix elements in the forward limit $\left(Q^{2}=0\right)$ :

$$
\langle M(p)| \mathcal{O}|M(p)\rangle
$$

- Operators of interest:

$$
\begin{gathered}
\mathcal{O}_{V}^{\{\mu \nu\}}=\bar{q} \gamma^{\{\mu} D^{\nu\}} q \\
\mathcal{O}_{V}^{\{\mu \nu \rho\}}=\bar{q} \gamma^{\{\mu} D^{\nu} D^{\rho\}} q \\
\mathcal{O}_{V}^{\{\mu \nu \rho \tau\}}=\bar{q} \gamma^{\{\mu} D^{\nu} D^{\rho} D^{\tau\}} q
\end{gathered}
$$

## PDF reconstruction setup

- Standard PDF functional form:

$$
q_{M}^{f}(x)=N x^{\alpha}(1-x)^{\beta}(1+\rho \sqrt{x}+\gamma x)
$$

- $\rho$ generally assumed to be small, so we neglect $\rho \sqrt{x}$ term
- Normalization factor:

$$
\langle 1\rangle_{M}=\int_{0}^{1} q_{M}(x)=1 \Longrightarrow N=\frac{1}{B(\alpha+1, \beta+1)+\gamma B(2+\alpha, \beta+1)}
$$

- Moment integrals:

$$
\left\langle x^{n}\right\rangle=\frac{\left(\prod_{i=1}^{n}(i+\alpha)\right)(n+2+\alpha+\beta+(i+1+\alpha) \gamma)}{\left(\prod_{i=1}^{n}(i+2+\alpha+\beta)\right)(2+\alpha+\beta+(1+\alpha) \gamma)}
$$

## Lattice details

- $N_{f}=2+1+1$ twisted-clover fermions


## Ensemble Parameters

| $a[\mathrm{fm}]$ | $N_{f}$ | $m_{\pi}[\mathrm{MeV}]$ | $m_{K}[\mathrm{MeV}]$ | volume $L^{3} \times T$ | $L[\mathrm{fm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.093 | $2+1+1$ | 260 | 530 | $32^{3} \times 64$ | 3.0 |

## Statistics

| p | p combos. | $T_{\text {sink }}$ | confs | src pos. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(0,0,0)$ | 1 | $12,14,16,18,20,24$ | 122 | 16 | 1,920 |
| $( \pm 1, \pm 1, \pm 1)$ | 8 | $12,14,16,18$ | 122 | 72 | 70,272 |

- Boosted frame: $( \pm 1, \pm 1, \pm 1)$ to calculate $\left\langle x^{2}\right\rangle$ and $\left\langle x^{3}\right\rangle$


## Overview

## 1 Motivation

2 Methodology

3 Mellin moments

4 Pion and Kaon PDF Reconstruction

5 Summary

## First three non-trivial moments

- Excited states sizeable (backup slides)

■ Find results for 2-state fits including up to $T_{\text {sink }}=2.2 \mathrm{fm}$ for $\langle x\rangle$ and $T_{\text {sink }}=1.7 \mathrm{fm}$ for $\left\langle x^{2}\right\rangle,\left\langle x^{3}\right\rangle$

$$
\begin{aligned}
& \langle x\rangle_{u}^{\pi^{+}}=0.261(3)(6) \\
& \langle x\rangle_{u}^{K^{+}}=0.246(2)(2) \\
& \langle x\rangle_{s}^{K^{+}}=0.317(2)(1)
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle_{u}^{\pi^{+}}=0.110(7)(12) \\
& \left\langle x^{2}\right\rangle_{u}^{K^{+}}=0.096(2)(2) \\
& \left\langle x^{2}\right\rangle_{s}^{K^{+}}=0.139(2)(1)
\end{aligned}
$$

$$
\begin{array}{|c|}
\hline\left\langle x^{3}\right\rangle_{u}^{\pi^{+}}=0.024(18)(2) \\
\left\langle x^{3}\right\rangle_{u}^{K^{+}}=0.033(6)(1) \\
\left\langle x^{3}\right\rangle_{s}^{K^{+}}=0.073(5)(2) \\
\hline
\end{array}
$$

$$
\frac{\left\langle x^{2}\right\rangle_{u}^{\pi^{+}}}{\langle x\rangle_{u}^{\pi^{+}}}=0.423(28)(57)
$$

$$
\frac{\left\langle x^{2}\right\rangle_{u}^{k^{+}}}{\langle x\rangle_{u}^{K^{+}}}=0.391(10)(16)
$$

$$
\frac{\left\langle x^{2}\right\rangle_{s}^{K^{+}}}{\langle x\rangle_{s}^{K^{+}}}=0.438(8)(11)
$$

$$
\begin{aligned}
& \frac{\left\langle x^{3}\right\rangle_{u}^{\pi^{+}}}{\langle x\rangle\rangle^{\pi^{+}}}=0.092(71)(6) \\
& \frac{\left\langle 3^{3}\right\rangle_{u}^{K^{+}}}{\langle x\rangle_{U^{+}}^{K^{+}}}=0.135(26)(8) \\
& \frac{\left\langle x^{3}\right\rangle_{s}^{K^{+}}}{\langle x\rangle_{s}^{K^{+}}}=0.232(16)(1)
\end{aligned}
$$

- $\left\langle x^{2}\right\rangle /\langle x\rangle \sim 40 \%,\left\langle x^{3}\right\rangle /\langle x\rangle \sim 10-20 \%$
- More details in [Phys. Rev. D 103, 014508 (2021), arXiv:2010.03495] and [arXiv:2104.02247]


## SU(3) flavor symmetry breaking

$$
\begin{aligned}
& \frac{\langle x\rangle\rangle_{\pi}^{u^{+}}}{\langle x\rangle_{k}^{u^{+}}}=1.060(9)(7) \\
& \frac{\left\langle x^{2}\right\rangle \pi^{u^{+}}}{\left\langle x^{2}\right\rangle{ }_{k}^{u^{+}}}=1.148(57)(106) \\
& \frac{\left\langle x^{3}\right\rangle \pi^{u^{+}}}{\left\langle x^{3}\right\rangle_{k}^{u^{+}}}=0.717(488)(94)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\langle x\rangle\rangle_{\pi}^{u^{+}}}{\langle x\rangle_{K}^{s^{+}}}=0.823(8)(10) \\
& \frac{\left\langle x^{2}\right\rangle_{\pi}^{+}}{\left\langle x^{2}\right\rangle_{k}^{+5}}=0.795(45)(80) \\
& \frac{\left\langle x^{3}\right\rangle \pi^{4+}}{\left\langle x^{3}\right\rangle_{K}^{s^{+}}}=0.325(244)(23)
\end{aligned}
$$

- SU(3) symmetry breaking $\sim 5-10 \%$ for $\langle x\rangle$
- ~ $10-20 \%$ for $\left\langle x^{2}\right\rangle$
- ~ $30-50 \%$ for $\left\langle x^{3}\right\rangle$
- Symmetry breaking between $\pi$ and strange part of $K$ is more pronounced in the higher moments


## Overview

## 1 Motivation

2 Methodology

3 Mellin moments

4 Pion and Kaon PDF Reconstruction

## 5 Summary

## Effect of fit function

- Moments evolved to scale of 5.2 GeV
- 2-parameter fit: $\alpha, \beta$

■ 3-parameter fit: $\alpha, \beta, \gamma$


- 3-parameter fit has larger statistical uncertainty
- We find little dependence of shape on the fit function

■ We proceed with the 2-parameter fits

## Excited-state effects



■ Excited-state effects appear to raise peak
■ We choose the two-state fit as our final estimates

## Effects of number of moments in fit



- $\left\langle x^{n_{\max }}\right\rangle=\left\langle x^{4}\right\rangle$ : add constraint from
- phenomenological result $\left\langle x^{4}\right\rangle_{\pi}^{u}=0.027(2)$
- model calculations $\left\langle x^{4}\right\rangle_{K}^{s}=0.029_{-0.004}^{+0.005},\left\langle x^{4}\right\rangle_{K}^{u}=0.021_{-0.003}^{+0.003}$

■ We choose $n_{\max }=3$ as our final estimates

## Can PDF be accurately reconstructed from 3 moments?

- Calculate moments from JAM global fit [P. C. Barry et. al. (JAM collaboration), arXiv:1804.01965]
- Reconstruct PDF from 1st 3 JAM moments
- Reconstructed PDF has larger errors, agrees well with actual JAM PDF
- Reconstructed $n=4$ moment:

$$
\left\langle x^{4}\right\rangle_{\pi}^{u}=0.026(2)
$$

■ Actual JAM $n=4$ moment:
$\left\langle x^{4}\right\rangle_{\pi}^{u}=0.027(2)$

## SU(3) flavor symmetry breaking

■ Up quark equally prevalent in pion as in kaon for most regions of $x$


- Small difference between $x q_{\pi}^{u}(x)$ and $x q_{k}^{u}(x)$ around $x \approx 0.5$
- Distribution of strange quark in kaon is greater than up quark in pion for $x \approx 0.3-0.7$
- Peaks at

$$
\begin{aligned}
& x q_{\pi}^{u}(x=0.30)=0.42(5) \\
& x q_{\pi}^{u}(x=0.27)=0.43(2) \\
& x q_{\pi}^{u}(x=0.35)=0.52(2)
\end{aligned}
$$

## Mellin moments from reconstructed PDFs

|  | $q_{u}^{f}$ | $\langle x\rangle$ | $\left\langle x^{2}\right\rangle$ |
| :---: | :---: | :---: | :---: |
| $q_{\pi}^{u}$ | $0.229(3)(7)$ | $0.087(5)(7)$ | $0.042\rangle$ |
| $q_{K}^{u}$ | $0.217(2)(5)(9)$ | $0.077(2)(1)$ | $0.035(2)(2)$ |
| $q_{K}^{s}$ | $0.279(1)(5)$ | $0.114(2)(4)$ | $0.057(2)(2)$ |
| $q_{M}^{f}$ | $\left\langle x^{4}\right\rangle$ | $\left\langle x^{5}\right\rangle$ | $\left\langle x^{6}\right\rangle$ |
| $q_{u}^{u}$ | $0.023(5)(7)$ | $0.014(4)(6)$ | $0.009(3)(4)$ |
| $q_{K}^{u}$ | $0.019(1)(2)$ | $0.011(1)(1)$ | $0.007(1)(1)$ |
| $q_{K}^{s}$ | $0.032(2)(2)$ | $0.020(1)(2)$ | $0.013(1)(2)$ |

- Calculate by integrating over reconstructed PDFs

■ Uncertainties under control even for higher moments

- Our $\left\langle x^{4}\right\rangle_{\pi}^{u}$ in agreement with moment from JAM PDF $\left\langle x^{4}\right\rangle_{\pi}^{u}=0.027(2)$ [P. C. Barry et. al. (JAM collaboration), arXiv:1804.01965]


## Comparison to other studies, pion



- pseudo, LCS: lattice results using non-local operators
■ Qualitative comparison, studies have different systematic uncertainties which are not all quantified


## Comparison to other studies, kaon



■ Good agreement at highand low- $x$, most tension in intermediate- $x$ region

- Qualitative comparison


## Large- $x$ behavior for pion

- There is some tension between studies of the high- $x$ behavior of the pion PDF
- Un-quantified systematics

■ Original analysis of Fermilab E615 (gray circles) experiment finds $\sim(1-x)^{1}(\beta=1)$


- More recent analysis of the same data (solid cyan line) finds $\sim(1-x)^{2}$ ( $\beta=2$ )
- This study: $\beta=2.23(65)$
- Our results favor $(1-x)^{2}$ large- $x$ behavior, in agreement with ASV and DSE
- Our kaon results also favor $(1-x)^{2}$ large- $x$ behavior


## Overview

## 1 Motivation

2 Methodology

3 Mellin moments

4 Pion and Kaon PDF Reconstruction

5 Summary

■ Calculated first three non-trivial Mellin moments of PDFs

- Pioneering study has shown for the first time that PDFs can be reconstructed using the first three moments
- Higher order Mellin moments not included in fit can be calculated from reconstructed PDFs with well-controlled uncertainties

■ Calculated first three non-trivial Mellin moments of PDFs

- Pioneering study has shown for the first time that PDFs can be reconstructed using the first three moments
- Higher order Mellin moments not included in fit can be calculated from reconstructed PDFs with well-controlled uncertainties


## Thank you

## Backup Slides

## Meson decomposition for $\langle x\rangle,\left\langle x^{2}\right\rangle$, and $\left\langle x^{3}\right\rangle$

- Lattice breaks Euclidean Lorentz group $O(4)$ symmetry to discreet hyber cubic group $\mathrm{H}(4) \Longrightarrow$ mixing among operators
- We only use operators that are free of mixing with lower dimension operators, i.e., all indices are taken different for the 2 - and 3-derivative operators
- This leads to decomposition in forward limit for general frame:

$$
\begin{gathered}
\Pi^{\{00\}}=\frac{1}{2 E}\left(\frac{m^{2}}{2}-2 E^{2}\right)\langle x\rangle \\
\Pi^{\{0 i j\}}=-p_{i} p_{j}\left\langle x^{2}\right\rangle \\
\Pi^{\{0 i j k\}}=-i p_{i} p_{j} p_{k}\left\langle x^{3}\right\rangle
\end{gathered}
$$

$$
E=\sqrt{m^{2}+p^{2}}
$$

$p$ : hadron momentum

■ Due to $p$ in kinematic factor, $\left\langle x^{n}\right\rangle$ with $n>1$ requires boosted frame to calculate $\left\langle x^{n}\right\rangle$

- Since indices $i, j$, and $k$ are different, we need a boosted frame with at least:
- $p=( \pm 1, \pm 1,0) \frac{2 \pi}{L}$ for $\left\langle x^{2}\right\rangle$
- $p=( \pm 1, \pm 1, \pm 1) \frac{2 \pi}{L}$ for $\left\langle x^{3}\right\rangle$


## First Mellin moment $\langle x\rangle$, rest frame



- Plateau: $\xrightarrow[C_{0} e^{-E_{0} T_{\text {sink }}}]{\frac{C_{\text {sint }}^{3 p t}}{} \text {. }}$
from two-state fit
- Two-state fit consistent with plateau for $T_{\text {sink }} \geq 18$ a ( 1.6 fm )
- $\overline{M S}(2 \mathrm{GeV})$

$$
\begin{aligned}
& \langle x\rangle_{u}^{\pi^{+}}=0.261(3)_{\text {stat }}(6)_{\text {syst }} \\
& \langle x\rangle_{u}^{K^{+}}=0.246(2)_{\text {stat }}(2)_{\text {syst }} \\
& \langle x\rangle_{s}^{K^{+}}=0.317(2)_{s t a t}(1)_{s y s t}
\end{aligned}
$$

- Phenomonological results:
$2\langle x\rangle_{u}^{\pi^{+}}=0.48(1)$
[Bary et. al., arXiv: 1804:01965]
- Compatible with other lattice calculations at similar $m_{\pi}$.
Comparisons in [Alexandrou et. al., arXiv:2010.03495]
- $\langle x\rangle_{u}^{K^{+}}<\langle x\rangle_{u}^{\pi^{+}}<\langle x\rangle_{s}^{K^{+}}$


## First Mellin moment $\langle x\rangle$, momentum frame comparison



- Serves to test signal of $\langle x\rangle$ in boosted frame
- Useful for selecting $T_{\text {sink }}$ to optimize computer resources
- Agreement between two frames in plateau and two-state fit
- More details in [Alexandrou et. al., arXiv:2010.03495]


## Second Mellin moment $\left\langle x^{2}\right\rangle$



$$
\begin{gathered}
\left\langle x^{2}\right\rangle_{u}^{\pi^{+}}=0.110(7)(12) \\
\left\langle x^{2}\right\rangle_{u}^{K^{+}}=0.096(2)(2) \\
\left\langle x^{2}\right\rangle_{s}^{K^{+}}=0.139(2)(1)
\end{gathered}
$$

- Phenomonological results:

$$
2\left\langle x^{2}\right\rangle_{u}^{\pi^{+}}=0.210(5)
$$

[Barry et. al., arXiv: 1804:01965]

- Ratio $\left\langle x^{2}\right\rangle /\langle x\rangle$ is an indication of how quickly the PDFs lose support at large $x$

$$
\begin{aligned}
& \frac{\left\langle x^{2}\right\rangle_{u}^{\pi^{+}}}{\langle x\rangle_{u}^{\pi^{+}}}=0.423(28)(57) \\
& \frac{\left\langle x^{2}\right\rangle_{u}^{K^{+}}}{\langle x\rangle_{u}^{K^{+}}}=0.391(10)(16) \\
& \frac{\left\langle x^{2}\right\rangle_{s}^{K^{+}}}{\langle x\rangle_{s}^{K^{+}}}=0.438(8)(11)
\end{aligned}
$$

## Third Mellin moment $\left\langle x^{3}\right\rangle$



$$
\begin{aligned}
& \left\langle x^{3}\right\rangle_{u}^{\pi^{+}}=0.024(18)(2) \\
& \left\langle x^{3}\right\rangle_{u}^{K^{+}}=0.033(6)(1) \\
& \left\langle x^{3}\right\rangle_{s}^{K^{+}}=0.073(5)(2)
\end{aligned}
$$

- $\pi$ near zero due to high uncertainties
- Clear signal for both flavors of $K$
- $\left\langle x^{3}\right\rangle<\left\langle x^{2}\right\rangle<\langle x\rangle$

$$
\begin{aligned}
& \frac{\left\langle x^{3}\right\rangle_{u}^{\pi^{+}}}{\langle x\rangle_{u}^{\pi^{+}}}=0.092(71)(6) \\
& \frac{\left\langle x^{3}\right\rangle_{u}^{K^{+}}}{\langle x\rangle\rangle_{u}^{K^{+}}}=0.135(26)(8) \\
& \frac{\left\langle x^{3}\right\rangle_{s}^{K^{+}}}{\langle x\rangle_{s}^{K^{+}}}=0.232(16)(1) \\
& \hline
\end{aligned}
$$

## Effect of fit function

| fit type | $\alpha_{\pi}^{u}$ | $\beta_{\pi}^{u}$ | $\gamma_{\pi}^{u}$ | $\chi^{2} /$ d.o.f. |
| :---: | :---: | :---: | :---: | :---: |
| 2-parameter | $-0.05(19)$ | $2.20(64)$ | 0 | 1.50 |
| 3-parameter | $-0.57(15)$ | $2.72(61)$ | $24.86(1.93)$ | - |
| fit type | $\alpha_{K}^{u}$ | $\beta_{K}^{u}$ | $\gamma_{K}^{u}$ | $\chi^{2} /$ d.o.f. |
| 2-parameter | $-0.005(81)$ | $2.59(28)$ | 0 | 1.95 |
| 3-parameter | $-0.52(6)$ | $3.17(27)$ | $24.01(91)$ | - |
| fit type | $\alpha_{K}^{s}$ | $\beta_{K}^{s}$ | $\gamma_{K}^{s}$ | $\chi^{2} /$ d.o.f. |
| 2-parameter | $0.26(9)$ | $2.27(22)$ | 0 | 0.012 |
| 3-parameter | $0.29(37)$ | $1.85(2.21)$ | $-0.58(5.32)$ | - |

