Calculation of the Second Moment of the Pion Light-Cone Distribution Amplitude

Massachusetts Institute of Technology

Results

William Detmold, **Anthony Grebe**, Issaku Kanamori, David Lin, Santanu Mondal, Robert Perry, Yong Zhao

July 29, 2021

- Motivation
- Numerical Implementation
- 3 Results
- 4 Conclusion

• LCDA $\varphi_{\pi}(\xi)$ defined via

$$\langle 0|ar{d}(-z)\gamma_{\mu}\gamma_{5}\mathcal{W}[-z,z]u(z)|\pi^{+}(p)\rangle=ip_{\mu}f_{\pi}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}\varphi_{\pi}(\xi)$$

- z represents light-like separation not amenable to direct lattice calculation
- Represents amplitude for π transitioning into $q\bar{q}$ pair with momenta $(1+\xi)p/2$, $(1-\xi)p/2$
- QCD factorization theorems many physical processes (EM form factor, $\gamma\gamma^* \to \pi^0$, etc.) depend on φ_π (times perturbative parts)

Lattice Determination of LCDA

Our approach: expand LCDA into Mellin moments

$$\langle \xi^n \rangle = \int_{-1}^1 d\xi \, \xi^n \varphi_\pi(\xi)$$

- ullet This talk: Computation of $\langle \xi^2 \rangle$
- Next talk (Robert Perry): Exploratory computation of $\langle \xi^4 \rangle$
- Previous lattice calculations
 - Local matrix elements (give $\langle \xi^2 \rangle$, but higher moments suffer from power divergences)
 - Light-quark operator product expansion
 - Quasi-PDF and pseudo-PDF (determine $\varphi_{\pi}(\xi)$ without recourse to moments)
- Challenging but important problem want multiple independent approaches

Motivation

Heavy-Quark Operator Product Expansion (HOPE)

Form hadronic tensor from flavor-changing axial currents:

$$U^{\mu
u}(q,p) = \int d^4x \, e^{iq\cdot x} \langle 0|\mathcal{T} \left[A^{\mu}(x/2)A^{\nu}(-x/2)\right]|\pi^+(p)
angle$$
 $A^{\mu} = \bar{\Psi}\gamma^{\mu}\gamma_5\psi + \bar{\psi}\gamma^{\mu}\gamma_5\Psi$

where ψ is a light quark and Ψ is a heavy quark

Hadronic tensor can be expanded in terms of moments

$$U^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

with
$$ilde{\omega}=2p\cdot q/ ilde{Q}^2$$
 and $ilde{Q}^2=-q^2-m_\Psi^2$

• Heavy quark mass m_{Ψ} suppresses higher-twist effects

Hadronic Tensor

$$U^{\mu\nu}(q,p) = \int d^4x \, e^{i\mathbf{q}\cdot\mathbf{x}} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{\mathbf{x}}{2} \right) A^{\nu} \left(-\frac{\mathbf{x}}{2} \right) \right] \right| \pi^+(p) \right\rangle$$
$$\int dq_4 e^{-iq_4\tau} U^{\mu\nu}(q,p) = \int d^3\mathbf{x} \, e^{i\mathbf{q}\cdot\mathbf{x}} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{\mathbf{x}}{2}, \frac{\tau}{2} \right) A^{\nu} \left(-\frac{\mathbf{x}}{2}, -\frac{\tau}{2} \right) \right] \right| \pi^+(\mathbf{p}) \right\rangle$$

• Inverse FT of $U^{\mu\nu}$ calculable on lattice in terms of 2-point and 3-point functions

$$C_2(au) = \langle \mathcal{O}_{\pi}(au) \mathcal{O}_{\pi}^{\dagger}(0)
angle \ C_3(au_e, au_m) = \langle A^{\mu}(au_e) A^{
u}(au_m) \mathcal{O}_{\pi}^{\dagger}(0)
angle$$

• Isolation of ground state relies on sufficiently large separation between 0 and min $\{\tau_e, \tau_m\}$

Excited States

- $\tau_m \tau_e$ fixed at 0.06 fm
- \bullet Excited state contamination becomes \sim 1% by τ_e = 0.7 fm $_{\tiny{2}}$

- Hadronic tensor equals twist-2 OPE up to $O(\Lambda_{\rm QCD}/\tilde{Q}) = O(\Lambda_{\rm QCD}/m_{\Psi})$ corrections
- Want $m_\Psi \gg \Lambda_{\sf QCD}$ but $am_\Psi < 1$
- Choose five m_Ψ values between 1.8 and 4.5 GeV in order to extrapolate to $m_\Psi \to \infty$ limit
- Requires fine lattices (spacings down to 0.04 fm)

Ensembles Used

$L^3 \times T$	a (fm)	$N_{\rm cfg}$	$N_{\rm src}$	N_{Ψ}	N_{prop}
$24^{3} \times 48$	0.0813	650	3	1	39,000
$32^{3} \times 64$	0.0600	450	10	3	270,000
$40^{3} \times 80$	0.0502	250	6	4	120,000
$48^{3} \times 96$	0.0407	341	10	5	341,000

- Quenched approximation with $m_\pi=550~{
 m MeV}$
 - Fine dynamical ensembles prohibitively expensive
 - Total compute time: $O(10^5)$ KNL node-hours
- Wilson-clover fermions with non-perturbatively tuned c_{SW}
- With clover term, results fully O(a) improved
 - Axial current renormalizes multiplicatively: $A^{\mu} \rightarrow A^{\mu} Z_A (1 + \tilde{b}_A a \tilde{m}_a)$
 - This only affects overall normalization (not $\langle \xi^2 \rangle$)

Motivation

$$U^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

- Wilson coefficients $C_{W}^{(n)}(\mu=2 \text{ GeV})$ calculated to 1-loop (hep-lat/2103.09529)
- Fit parameters: f_{π} , m_{Ψ} , $\langle \xi^2 \rangle$
- Contribution of second moment $\langle \xi^2 \rangle$ suppressed by $\tilde{\omega}^2$
- At low momenta, $\tilde{\omega}/2 \lesssim 0.1$, so $\langle \xi^2 \rangle$ term is percent-level contribution
- For $\mu = 1$, $\nu = 2$, $p_3 = 0$, $\mathbf{p} \cdot \mathbf{q} \neq 0$
 - Im[$U^{\mu\nu}$] dominated by $\langle \xi^0 \rangle$ fit f_{π} , m_{Ψ} • Re[$U^{\mu\nu}$] independent of $\langle \xi^0 \rangle$ (at tree level) – fit $\langle \xi^2 \rangle$
- Choose $\mathbf{p} = (1, 0, 0) = (0.64 \text{ GeV}, 0, 0),$ $2\mathbf{q} = (1,0,2) = (0.64 \text{ GeV}, 0, 1.28 \text{ GeV})$

Fitting Hadronic Tensor

• Fit ratio of 2- and 3-point correlators to inverse FT of OPE

$$f_\pi = 141 \pm 2 \; ext{MeV}$$
 $m_{ extsf{W}} = 1.81 \pm 0.01 \; ext{GeV}$

$$\langle \xi^2 \rangle = 0.216 \pm 0.010$$

Fits to Various Ensembles

Masses are (left to right) {1.8, 2.5, 3.3, 3.9, 4.5} GeV

Continuum Extrapolation

Extrapolate away both discretization errors and twist-3 effects

$$\langle \xi^2
angle = 0.240 \pm 0.014$$
 (stat.)

- ullet Original fit restricted am_{Ψ} to < 1
- Could take a more conservative threshold, e.g. $am_{\Psi} < 0.7$
- Fit result: $\langle \xi^2 \rangle = 0.232 \pm 0.042$

Uncertainty in Higher-Twist Effects

Could add twist-4 term to fit as well

$$\mathsf{data} = \langle \xi^2
angle + rac{A}{m_\Psi} + rac{B}{m_\Psi^2} + \mathit{Ca}^2 + \mathit{Da}^2 m_\Psi + \mathit{Ea}^2 m_\Psi^2$$

• Fit result: $\langle \xi^2 \rangle = 0.236 \pm 0.020$

Uncertainty in Quenching

- Formally uncontrollable cannot be reliably estimated
- ullet One component of quenching error change in $lpha_{
 m s}$
- At $\mu = 2$ GeV, α_s (quenched) = 0.20 but α_s (dynamical) = 0.29
- Using dynamical α_s instead of quenched α_s gives handle on one piece of quenching error
- \bullet Fit result: $\langle \xi^2 \rangle = 0.219 \pm 0.013$

- Excited state contamination: estimated at 1%
- Finite volume effects: $m_{\pi}L = 5.4 \Rightarrow \frac{1}{m_{\pi}L}e^{-m_{\pi}L} = 8 \times 10^{-4}$
- Unphysical pion mass ($m_\pi=550$ MeV): Likely a $\sim 5\%$ error (V. M. Braun et al., hep-lat/1503.03656)
- ullet Fit range: UV divergences at small au from operator overlap/mixing
 - ullet Excluding au=1 as well gives discrepancy of ± 0.008
- Wilson coefficients: Performing fit at $\mu=$ 4 GeV and running back to 2 GeV gives discrepancy of ± 0.002

Motivation

$$\langle \xi^2 \rangle = 0.240 \pm 0.014 \text{ (statistical)}$$

$$\pm 0.008 \text{ (continuum)}$$

$$\pm 0.004 \text{ (higher twist)}$$

$$\pm 0.002 \text{ (excited states)}$$

$$\pm 0.0002 \text{ (finite volume)}$$

$$\pm 0.014 \text{ (unphysically heavy pion)}$$

$$\pm 0.008 \text{ (fit range)}$$

$$\pm 0.002 \text{ (running coupling)}$$

$$\langle \xi^2 \rangle = 0.240 \pm 0.023 \text{ (total, exc. quenching)}$$

$$\pm 0.021 \text{ (quenching}^1)$$

¹Rough estimate of quenching error

Comparison to Literature

Second Mellin moment of pion LCDA:

$$\langle \xi^2 \rangle = 0.240 \pm 0.023 \pm 0.021$$

Important but hard problem – want multiple approaches

- Del Debbio et al. (2002): $\langle \xi^2 \rangle = 0.280 \pm 0.051$ (quenched)
- Zhang et al. (2020): $\langle \xi^2 \rangle = 0.244 \pm 0.030$
- Bali et al. (2019): $\langle \xi^2 \rangle = 0.235 \pm 0.008$
- Arthur et al. (2011): $\langle \xi^2 \rangle = 0.28 \pm 0.02$

Overall, consistent with previous results

- Complementary check to other methods
- Potential for generalization to higher moments