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Light-Cone Distribution Amplitude

LCDA ϕπ(ξ) defined via

〈0|d̄(−z)γµγ5W[−z , z ]u(z)|π+(p)〉 = ipµfπ

∫ 1

−1
dξ e−iξp·zϕπ(ξ)

z represents light-like separation – not amenable to direct
lattice calculation

Represents amplitude for π transitioning into qq̄ pair with
momenta (1 + ξ)p/2, (1− ξ)p/2

QCD factorization theorems – many physical processes (EM
form factor, γγ∗ → π0, etc.) depend on ϕπ (times
perturbative parts)
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Lattice Determination of LCDA

Our approach: expand LCDA into Mellin moments

〈ξn〉 =

∫ 1

−1
dξ ξnϕπ(ξ)

This talk: Computation of 〈ξ2〉
Next talk (Robert Perry): Exploratory computation of 〈ξ4〉

Previous lattice calculations

Local matrix elements (give 〈ξ2〉, but higher moments suffer
from power divergences)
Light-quark operator product expansion
Quasi-PDF and pseudo-PDF (determine ϕπ(ξ) without
recourse to moments)

Challenging but important problem – want multiple
independent approaches
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Heavy-Quark Operator Product Expansion (HOPE)

Form hadronic tensor from flavor-changing axial currents:

Uµν(q, p) =

∫
d4x e iq·x〈0|T [Aµ(x/2)Aν(−x/2)] |π+(p)〉

Aµ = Ψ̄γµγ5ψ + ψ̄γµγ5Ψ

where ψ is a light quark and Ψ is a heavy quark

Hadronic tensor can be expanded in terms of moments

Uµν(p, q) =
2ifπε

µνρσqρpσ

Q̃2

∞∑
n=0
even

ω̃n

2n(n + 1)
C

(n)
W (Q̃,mΨ, µ)〈ξn〉(µ)+O

(
ΛQCD

Q̃

)

with ω̃ = 2p · q/Q̃2 and Q̃2 = −q2 −m2
Ψ

Heavy quark mass mΨ suppresses higher-twist effects
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Hadronic Tensor

Uµν(q, p) =

∫
d4x e iq·x

〈
0
∣∣∣T [Aµ

(x
2

)
Aν
(
−x

2

)]∣∣∣π+(p)
〉

∫
dq4e

−iq4τUµν(q, p) =

∫
d3x e iq·x

〈
0
∣∣∣T [Aµ

(x
2
,
τ

2

)
Aν
(
−x

2
,−τ

2

)]∣∣∣π+(p)
〉

Inverse FT of Uµν calculable on lattice in terms of 2-point
and 3-point functions

C2(τ) = 〈Oπ(τ)O†π(0)〉
C3(τe , τm) = 〈Aµ(τe)Aν(τm)O†π(0)〉

Isolation of ground state relies on sufficiently large separation
between 0 and min {τe , τm}
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Excited States
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τm − τe fixed at 0.06 fm

Excited state contamination becomes ∼ 1% by τe = 0.7 fm
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Heavy Quark Masses

Hadronic tensor equals twist-2 OPE up to
O(ΛQCD/Q̃) = O(ΛQCD/mΨ) corrections

Want mΨ � ΛQCD but amΨ < 1

Choose five mΨ values between 1.8 and 4.5 GeV in order to
extrapolate to mΨ →∞ limit

Requires fine lattices (spacings down to 0.04 fm)
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Ensembles Used

L3 × T a (fm) Ncfg Nsrc NΨ Nprop

243 × 48 0.0813 650 3 1 39,000
323 × 64 0.0600 450 10 3 270,000
403 × 80 0.0502 250 6 4 120,000
483 × 96 0.0407 341 10 5 341,000

Quenched approximation with mπ = 550 MeV

Fine dynamical ensembles prohibitively expensive
Total compute time: O(105) KNL node-hours

Wilson-clover fermions with non-perturbatively tuned cSW

With clover term, results fully O(a) improved

Axial current renormalizes multiplicatively:
Aµ → AµZA(1 + b̃Aam̃q)
This only affects overall normalization (not 〈ξ2〉)



Motivation Numerical Implementation Results Conclusion

Choice of Kinematics

Uµν(p, q) =
2ifπε

µνρσqρpσ

Q̃2

∞∑
n=0
even

ω̃n

2n(n + 1)
C

(n)
W (Q̃,mΨ, µ)〈ξn〉(µ)+O

(
ΛQCD

Q̃

)

Wilson coefficients C
(n)
W (µ = 2 GeV) calculated to 1-loop

(hep-lat/2103.09529)

Fit parameters: fπ,mΨ, 〈ξ2〉
Contribution of second moment 〈ξ2〉 suppressed by ω̃2

At low momenta, ω̃/2 . 0.1, so 〈ξ2〉 term is percent-level
contribution
For µ = 1, ν = 2, p3 = 0, p · q 6= 0

Im[Uµν ] dominated by 〈ξ0〉 – fit fπ,mΨ

Re[Uµν ] independent of 〈ξ0〉 (at tree level) – fit 〈ξ2〉
Choose p = (1, 0, 0) = (0.64 GeV, 0, 0),
2q = (1, 0, 2) = (0.64 GeV, 0, 1.28 GeV)
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Fitting Hadronic Tensor

Fit ratio of 2- and 3-point correlators to inverse FT of OPE
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〈ξ2〉 = 0.216± 0.010
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Fits to Various Ensembles
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Masses are (left to right) {1.8, 2.5, 3.3, 3.9, 4.5} GeV
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Continuum Extrapolation
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Extrapolate away both discretization errors and twist-3 effects

〈ξ2〉 = 0.240± 0.014 (stat.)
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Uncertainty in Continuum Extrapolation
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Original fit restricted amΨ to < 1

Could take a more conservative threshold, e.g. amΨ < 0.7

Fit result: 〈ξ2〉 = 0.232± 0.042
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Uncertainty in Higher-Twist Effects
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Could add twist-4 term to fit as well
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Fit result: 〈ξ2〉 = 0.236± 0.020
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Uncertainty in Quenching

Formally uncontrollable – cannot be reliably estimated

One component of quenching error – change in αs

At µ = 2 GeV, αs(quenched) = 0.20 but
αs(dynamical) = 0.29

Using dynamical αs instead of quenched αs gives handle on
one piece of quenching error

Fit result: 〈ξ2〉 = 0.219± 0.013
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Remaining Uncertainties

Excited state contamination: estimated at 1%

Finite volume effects: mπL = 5.4⇒ 1
mπL

e−mπL = 8× 10−4

Unphysical pion mass (mπ = 550 MeV): Likely a ∼ 5% error
(V. M. Braun et al., hep-lat/1503.03656)

Fit range: UV divergences at small τ from operator
overlap/mixing

Excluding τ = 1 as well gives discrepancy of ±0.008

Wilson coefficients: Performing fit at µ = 4 GeV and running
back to 2 GeV gives discrepancy of ±0.002
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Combined Uncertainty

〈ξ2〉 = 0.240± 0.014 (statistical)

± 0.008 (continuum)

± 0.004 (higher twist)

± 0.002 (excited states)

± 0.0002 (finite volume)

± 0.014 (unphysically heavy pion)

± 0.008 (fit range)

± 0.002 (running coupling)

〈ξ2〉 = 0.240± 0.023 (total, exc. quenching)

± 0.021 (quenching1)

1Rough estimate of quenching error
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Comparison to Literature

Second Mellin moment of pion LCDA:

〈ξ2〉 = 0.240± 0.023± 0.021

Important but hard problem – want multiple approaches

Del Debbio et al. (2002): 〈ξ2〉 = 0.280± 0.051 (quenched)

Zhang et al. (2020): 〈ξ2〉 = 0.244± 0.030

Bali et al. (2019): 〈ξ2〉 = 0.235± 0.008

Arthur et al. (2011): 〈ξ2〉 = 0.28± 0.02

Overall, consistent with previous results

Complementary check to other methods

Potential for generalization to higher moments
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