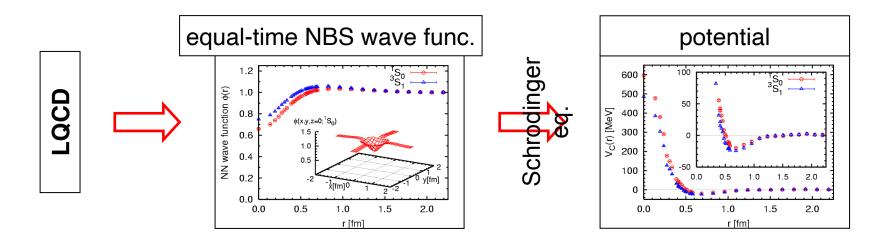
The qqbar potential from Wilson loop and the qqbar potential from NBS wave function N.Ishii (RCNP, Osaka univ.)

HAL QCD method for hadron-hadron potentials



(1) Equal-time NBS(Nambu-Bethe-Salpeter) wave function from Lattice QCD $\psi(\mathbf{x} - \mathbf{y}) \equiv \langle 0 | N(\mathbf{x})N(\mathbf{y}) | N(+k)N(-k), \text{ in} \rangle$ $\simeq e^{i\delta(k)} \frac{\sin(k|\mathbf{x} - \mathbf{y}| + \delta(k))}{k|\mathbf{x} - \mathbf{y}|} + \cdots \text{ for } |\mathbf{x} - \mathbf{y}| \rightarrow \text{ large}$ The series function of former or executions for extension of the series of t

The same functional form as scattering wave functions of non-rela Q.M. at long distance.

(2) The potential \hat{V} is defined by inversely solving Schrödinger eq.

$$\left(E_n - \hat{H}_0\right)\psi_n(\mathbf{r}) = \hat{V}\psi_n(\mathbf{r})$$

is faithful to the scattering phase shift $\delta(k)$

HAL QCD method has also been applied to qqbar potential

+ Equal-time qqbar NBS wave func.(=NBS amplitude) \rightarrow qqbar potential \hat{V}

$$\psi(\mathbf{x} - \mathbf{y}) \equiv \langle 0 | \bar{q}_c(\mathbf{x}) q_c(\mathbf{y}) | \psi \rangle \qquad \Box \searrow \quad \left(E + \frac{\nabla^2}{m_q} \right) \psi(\mathbf{r}) = \hat{V} \psi(\mathbf{r})$$

- ✓ Y.Ikeda, H.Iida,
 arXiv:1011.2866; arXiv:1102.2097; PTP128,No5,941(2012).
- ✓ T.Kawanai, S.Sasaki,
 PRL107,091601(2011); PRD89,054507(2014); PRD92,094503(2015).
- ✓ K.Nochi, T.Kawanai, S.Sasaki, PRD94,114514(2016)
- This method needs

a bit different formalism from the conventional HAL QCD method.

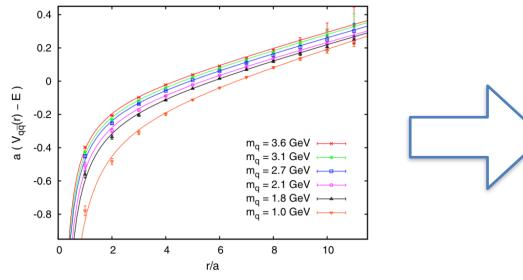
- ✓ Reproduction of scattering phase is not usable for the justification of \hat{V} . (Because of color confinement, no asymptotic states exist for an isolated quark)
- ✓ Only the reproduction of hadron spectrum can be used for the justification.
 →
 We will referred to this method as "NBS amplitude method".

NBS amplitude method for qqbar potential has a remarkable property

✦ It is reported that agreement between

- -- qqbar potential from equal-time NBS wave func.
- -- static qqbar potential from Wilson loop

is very good in the heavy quark mass limit.



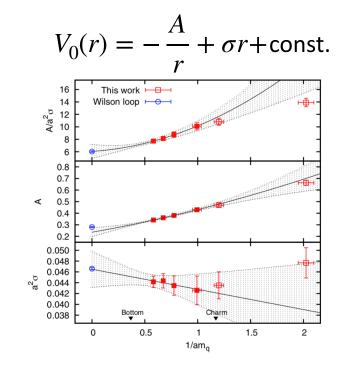
from Kawanai-Sasaki, PRL107

✦ However,

it is not mentioned how these two potentials can agree to each other.

\bullet In this talk,

we consider the relation between these two qqbar potentials.



Main Part

qqbar potential from NBS wave function

6

Equal-time qqbar NBS wave func. (in Coulomb gauge)

 $\psi_n(\mathbf{x} - \mathbf{y}) \equiv \langle 0 \, | \, \bar{q}_c(\mathbf{x}) q_c(\mathbf{y}) \, | \, n \rangle$

Schrödinger eq. (using PS and V states) qqbar mass

$$\left(E_n + \frac{\nabla^2}{m_q}\right)\psi_n(\mathbf{r}) = \hat{V}\psi_n(\mathbf{r}) \qquad E_n \equiv M_n - 2m_q$$

✓ Derivative expansion

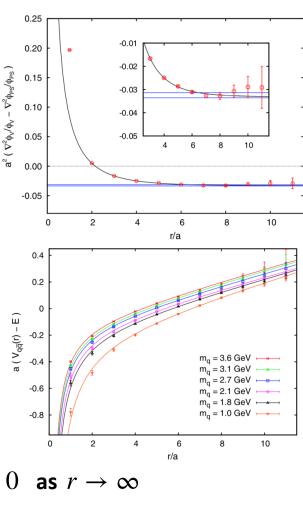
$$\hat{V} \equiv V_0(r) + V_\sigma(r)\mathbf{s}_1 \cdot \mathbf{s}_2 + \cdots$$

✓ quark mass

Naïve procedure does not work due to confinement Kawanai-Sasaki's proposal:

$$V_{\sigma}(r) = \frac{1}{m_q} \left(\frac{\nabla^2 \psi_{\rm V}(r)}{\psi_{\rm V}(r)} - \frac{\nabla^2 \psi_{\rm PS}(r)}{\psi_{\rm PS}(r)} \right) + M_{\rm V} - M_{\rm PS} \to 0 \quad \text{as } r \to \infty$$

$$m_q \equiv \frac{1}{M_{\rm V} - M_{\rm PS}} \lim_{r \to \infty} \left(\frac{\nabla^2 \psi_{\rm PS}(\mathbf{r})}{\psi_{\rm PS}(\mathbf{r})} - \frac{\nabla^2 \psi_{\rm V}(\mathbf{r})}{\psi_{\rm V}(\mathbf{r})} \right)$$



We temporarily include Wilson line for simple argument

◆ Equal-time qqbar NBS wave func. (gauge invariant NBS wave func.) $\psi_n(\mathbf{x} - \mathbf{y}) \equiv \langle 0 | \bar{q}_c(\mathbf{x}) U_{cc'}(\mathbf{x}, \mathbf{y}) q_{c'}(\mathbf{y}) | n \rangle$

is extracted from (gauge invariant) R-correlator(=modified 4-point corr.) as

$$R(\mathbf{x} - \mathbf{y}, t; \mathcal{J}) \equiv e^{2m_q} \langle 0 | T\{\bar{q}(\mathbf{x}, t)U(\mathbf{x}, t; \mathbf{y}, t)q(\mathbf{y}, t) \cdot \mathcal{J}(t = 0)\} | 0 \rangle$$
$$= \sum_n \psi_n(\mathbf{x} - \mathbf{y})a_n \exp\left[-t(M_n - 2m_q)\right] \text{ for } t > 0$$

where ${\mathscr J}$ is a (gauge invariant) wall source

$$\mathcal{J}(t) \equiv \frac{1}{V^2} \sum_{\mathbf{x}', \mathbf{y}'} \bar{q}(\mathbf{y}', t) U(\mathbf{y}', t; \mathbf{x}', t) q(\mathbf{x}', t)$$

• We require that $\psi_n(\mathbf{x})$ satisfy Schrödinger eq.

$$\left(E_n + \frac{\nabla^2}{m_q}\right)\psi_n(\mathbf{r}) = \hat{V}\psi_n(\mathbf{r})$$

then R-corr. satisfies the time-dependent Schroedinger eq. as

$$\left(-\frac{\partial}{\partial t} + \frac{\nabla^2}{m_q}\right) R(\mathbf{r}, t; \mathcal{J}) = \hat{V}R(\mathbf{r}, t; \mathcal{J})$$

which can be used to determine \hat{V}

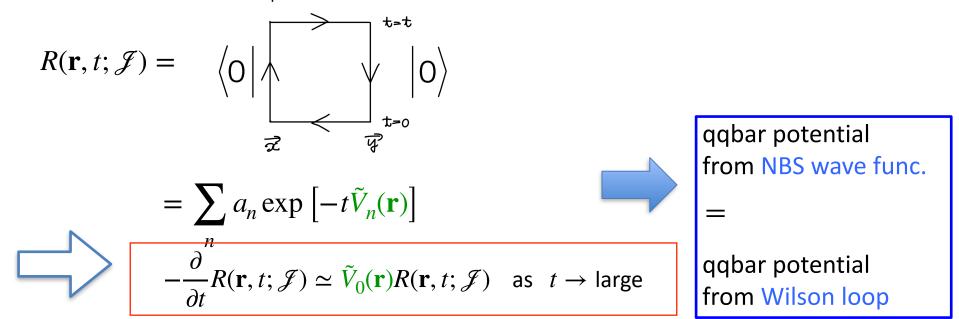
Large m_q limit

✦ Time-dependent Schrödinger eq. (large m_q limit)

quark propagator (large m_q limit)

$$S_q(\mathbf{x}, t; \mathbf{x}', 0)/e^{-m_q t} = \delta^3(x - x')U(\mathbf{x}, t; \mathbf{x}', 0)\frac{1 + \gamma_0}{2} + \cdots$$

R-correlator (large m_q limit)



NBS amplitude mothod with Coulomb gauge

$$\psi_n(\mathbf{x} - \mathbf{y}) \equiv \langle 0 \, | \, \bar{q}_c(\mathbf{x}) q_c(\mathbf{y}) \, | \, n \rangle$$

✦ Gauge fixing matrix

✓ $U[A](\mathbf{x}, t) \in SU(3)$ is defined to minimize

$$W_A[U] \equiv \int d^3x \operatorname{Tr}\left(A_i^U(\mathbf{x},t)^2\right)$$

 $\checkmark U[A]$ is a matrix which transforms $A_i \rightarrow A_i^{\text{fix}}$

$$\mathbf{A} \mapsto \mathbf{A}^{U[A]} = \mathbf{A}^{\text{fix}}$$
 with $\nabla \cdot \mathbf{A}^{\text{fix}} = 0$

Comment

✓ In QED, analytic expression is available $U[A](\mathbf{x}, t) = \exp\left[i \bigtriangleup^{-1} \nabla \cdot \mathbf{A}(\mathbf{x}, t)\right]$

In QCD, it is obtained only through numerical calculation

✓ For
$$A = A^{\text{fix}}$$
 which satisfies the gauge fixing condition,
 $U[A^{\text{fix}}](\mathbf{x}, t) = 1$

 $A_i^{U} \equiv -iU \left(\partial_i + iA_i\right) U^{\dagger}$

Gauge fixing matrix

U[A] is determined up to a constant Ω₀ ∈ SU(3) from left.

 $\Omega_0 \cdot U[A]$

◆ Under local gauge transformation Ω(**x**) ∈ SU(3): q(**x** $) \mapsto Ω($ **x**)q(**x**) $A_i($ **x** $) \mapsto A_i^Ω($ **x**) ≡ -iΩ(**x** $)(∂_i + iA_i($ **x**)) Ω[†](**x**)

U[A] transforms as $U[A](\mathbf{x}) \mapsto U[A^{\Omega}](\mathbf{x}) = U[A](\mathbf{x}) \cdot \Omega^{\dagger}(\mathbf{x})$

 The following combination is local gauge invariant, and global SU(3) ambiguity cancels out:

 $\bar{q}(\mathbf{y})U^{\dagger}[A](\mathbf{y}) \cdot U[A](\mathbf{x})q(\mathbf{x})$

 $\mapsto \bar{q}(\mathbf{y}) \mathbf{\Omega}^{\dagger}(\mathbf{y}) \cdot \mathbf{\Omega}(\mathbf{y}) U^{\dagger}(\mathbf{y}) \mathbf{\Omega}_{0}^{\dagger} \cdot \mathbf{\Omega}_{0} U[A](\mathbf{x}) \mathbf{\Omega}^{\dagger}(\mathbf{x}) \cdot \mathbf{\Omega}(\mathbf{x}) q(\mathbf{x})$

 $= \bar{q}(\mathbf{y})U^{\dagger}[A](\mathbf{y}) \cdot U[A](\mathbf{x})q(\mathbf{x})$

R-correlators with Coulomb gauge

✦ Gauge invariant R-correlator

$$\tilde{R}(\mathbf{x} - \mathbf{y}, t; \tilde{\mathcal{J}}) \equiv e^{2m_q t} \left\langle 0 \left| T \left\{ \bar{q}(\mathbf{x}, t) \boldsymbol{U}[A]^{\dagger}(\mathbf{x}, t) \cdot \boldsymbol{U}[A](\mathbf{y}, t) q(\mathbf{y}, t) \cdot \tilde{\mathcal{J}}(t = 0) \right\} \right| 0 \right\rangle$$

Gauge invariant wall source

$$\tilde{\mathcal{J}} \equiv \frac{1}{V^2} \int d^3 x' \int d^3 y' \,\bar{q}(\mathbf{y}') U[A]^{\dagger}(\mathbf{y}') \cdot U[A](\mathbf{x}')q(\mathbf{x}')$$

• Coulomb gauge R-corr.

$$R(\mathbf{x} - \mathbf{y}, t, \mathcal{J}) \equiv e^{2m_q t} \left\langle 0 \left| T\left\{ \bar{q}(\mathbf{x}, t)q(\mathbf{y}, t) \cdot \mathcal{J} \right\} \right| 0 \right\rangle$$
$$\mathcal{J} \equiv \frac{1}{V^2} \int d^3 x' \int d^3 y' \, \bar{q}(\mathbf{y}') \cdot q(\mathbf{x}')$$

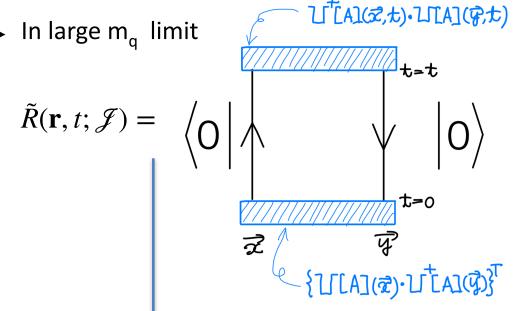
If Coulomb gauge fixing is employed

→ $U[A^{\text{fix}}] = 1 \rightarrow \tilde{R}(\mathbf{r}, t; \tilde{\mathcal{J}})$ reduces to $R(\mathbf{r}, t; \mathcal{J})$

 $\rightarrow \tilde{R}$ is a gauge invariant generalization of the Coulomb gauge R-correlator.

R-correlators with Coulomb gauge

n



Note:

 $U^{\dagger}[A](\mathbf{x},t) \cdot U[A](\mathbf{y},t)$

is a functional of $\mathbf{A}(x)$ contained

in a single time-slice t.

→We can regard it as "fat" Wilson loop.

✓ Wilson loop with "fat" source and "fat" sink → "fat" Wilson loop = $\sum b_n \exp \left[-t\tilde{V}_n(r)\right]$

Overlap with each intermediate state changes.

✓ Energy eigenvalues $\tilde{V}_n(r)$ do not change.

```
-\frac{\partial}{\partial t}\tilde{R}(\mathbf{r},t;\mathcal{J})\simeq\tilde{V}_0(\mathbf{r})\tilde{R}(\mathbf{r},t;\mathcal{J}) \text{ as } t \to \text{large}
```

qqbar potential from NBS wave func. = qqbar potential from Wilson loop

<u>Summary</u>

- ◆ There are several activities to obtain qqbar potential from the equal-time NBS wave function (HAL QCD method ≃NBS amplitude method).
 - -- Ikeda-Iida
 - -- Kawanai-Sasaki
 - -- Nochi-Kawanai-Sasaki
 - ✓ Remarkable property agreement with the static quark potential is numerically shown very good in the heavy quark mass limit.
 - ✓ However, it has not mentioned how these two potentials can agree.
- \blacklozenge In this talk, we considered how the two potentials can agree in large *m* limit
 - ✓ qqbar potential from NBS wave function
 - ✓ qqbar potential from Wilson loop