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Structure of the nucleons

» How is the charge distributed inside the nucleons?

» How does this distribution change at smaller scales?

» Need to calculate matrix
elements: (P(p')] 7(0) |P(p))
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Structure of the nucleons

» How is the charge distributed inside the nucleons?

» How does this distribution change at smaller scales?

» Need to calculate matrix
elements: (P(p')] 7(0) |P(p))

> matrix elements can be
parameterised by two form
factors: Fqi, F;

P
Nucleon

P

(P[7*1P) = a(p) | (@) + i 5= Fa(@?) | u(p)

Often rewrite the matrix element in terms of Gg and Gy, as
they are related to the charge and magnetisation distribution

2/17



Experimental results

» quantity of highest interest is

the momentum dependence at
various @2 values.

At Q? close to 0, this
dependence gives the charge
radius.

Recoil polarisation experiments
have shown ineresting large Q?
behaviour
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Lattice results

» High quality data for low @?

» Fewer calculations at high Q?
difficulties with signal-to-noise
ratio and controlling excited
states.

» Expensive to calculate high
enough statistics at high
momenta

Can the Feynman-Hellmann
approach deliver a viable
alternative at high Q3?
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Feynman-Hellmann theorem
Consider the forward case for the proton

» Insert a new term into the Lagrangian
L(x) = L(x) + A\O(x)
» Calculate the energy of the proton with this new term:

G\, p, t) =% A(N)e B

» Feynman-Hellmann theorem relates the energy shift to
the matrix element:

853,@ - o= (P(R)|0(0)|P(p))

How does the energy shift dE behave at small \?
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Feynman-Hellmann theorem = (¢ ‘ ‘"@

» At A =10"% —10"° the energy sh|ft behaves Imearly with
A

» Can now calculate matrix elements by using only lattice

two-point functions.
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https://arxiv.org/abs/1702.01513
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Electromagnetic form factors at large momentum

Feynman-Hellmann theorem

» Insert a term with vector current into the Lagrangian
L(x) = L(x) + 2Xcos(q - x)q(x)v,.q(x)

» Requirement: Breit frame is necessary here.

Since we want to access high Q?, setting p = —p’ will

satisfy this and keep noise to a minimum
dE, (pu"f4) I m, 2
‘B, = 5w Q)

» Using the temporal current: =25

dEP(pﬂT:’YZ)

» Using the spatial current: Y

_ [axé&] 2
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Ratio of two-point functions
How do we best extract the shift in the energy ?

Construct a ratio of forwards and backwards propagating
states with opposite parity projections which gives the energy
shift in the large time limit.
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Excited states
Include the excited states in the fitting function to be able to
include earlier timeslices in the fitting range.

Gt(\ +p,t) G (0,+p,—t)
Re ,(\, £ ’ d
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Weighted average of fits Ner =1500, 32° x 64, m, ~470MeV

» Include fits with several different t,,;, values and give
them weighting based on [NPL/QCDSF, PRD 2020]

N i
— Tof 30
EO — Z Wonf 020
65
f:1 2 0.15
~6.0 B
_ T(Naor /2, x7/2) i E
_ <55 0.10 =
[(Naor/2)
p ) >0 0.05
Pr <5E0) 15
~f
w = N p ) i 2 1 6 & w0 o onu u"
tmin a
>_fr—1 Pf ((5E0 ) !

pr = p-value for the fit, w’ = weighting of the fit
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Three-point functions

How does this method compare to the usual
three-point functions?

Recalculate the electromagnetic form factors of the nucleon
with three-point functions on the same lattice and using the

same breit frame momenta to facilitate an exact comparison.

>

>
>
>

UKQCD/QCDSF ensembles with Ny =2 + 1
L3x T=32x64 a=0.074 fm, m, ~ 470MeV
source-sink separations: 0.74 fm, 0.96 fm, 1.18 fm

Same Breit frame momenta as the Feynman-Hellmann
calculation

Use a two-exponential fit to the three source-sink
separations

11/17



Proton Form Factors — Nen = 1500, 323 x 64, m, ~ 470MeV
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Flavour symmetry breaking

» We use the flavour breaking expansion analysis from
[Bickerton et al, PRD 2020] to extrapolate our results to
the physical quark masses.

» Calculate seven D; quantities and five F; from the form
factors and fit to these as functions of the dm;.

1
%(AN’UN - AénE)
F2 = (ANr]N + Aéﬂ'E)
F3 = AZTI’Z

D1 = —(Agyn + Az,2) Fi =
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https://arxiv.org/abs/1909.02521

Flavour symmetry breaking
Neons = 1500, 323 x 64, m, = 310 — 466 MeV
1 1
Xp = 6(D1 + 2D, + 3D,), X = 6(3F1 + F, + 2F3)

F/XG" (Q* = 1.1GeV?)

~0.012 —0.010 —0.008 —0.006 —0.004 —0.002 0.000 0.002 0.004 0.006
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14 /17



Flavour symmetry breaking

Neons = 1500, 323 x 64,

2
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Flavour symmetry breaking

Neons A~ 800 — 1000, 48 x 96, m, = 310 — 466 MeV
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Conclusion

» The Feynman-Hellmann approach allows for the
calculation of form factors at high momentum.

» Including the contributions from excited states in the fits
makes the analysis more reliable across quark masses and
momenta.

Next steps:

» Include more quark masses to further constrain the
extrapolation to the physical point

» Increase N.,,r for lighter quark masses to improve the
uncertainties on the results

» Investigate the lattice spacing dependence of the results
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