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Structure of the nucleons

I How is the charge distributed inside the nucleons?
I How does this distribution change at smaller scales?

I Need to calculate matrix
elements: 〈P(p′)| J (0) |P(p)〉

I matrix elements can be
parameterised by two form
factors: F1,F2

〈P ′|Jν |P〉 = ū(p′)
[
γµF1(Q2) + iσµν qν

2M F2(Q2)
]
u(p)

Often rewrite the matrix element in terms of GE and GM , as
they are related to the charge and magnetisation distribution
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Experimental results
I quantity of highest interest is

the momentum dependence at
various Q2 values.

I At Q2 close to 0, this
dependence gives the charge
radius.

I Recoil polarisation experiments
have shown ineresting large Q2

behaviour

Ratio GE
GM

crossing over zero?

I Conflict with older Rosenbluth
separation data
→ more data is required

[Bezginov,2019]
DOI:10.1126/science.aau7807

[JLab,2015]
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https://arxiv.org/abs/1503.01452


Lattice results

I High quality data for low Q2

I Fewer calculations at high Q2

difficulties with signal-to-noise
ratio and controlling excited
states.

I Expensive to calculate high
enough statistics at high
momenta

Can the Feynman-Hellmann
approach deliver a viable
alternative at high Q2?

[Jang et al,2020]
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https://arxiv.org/abs/1906.07217


Feynman-Hellmann theorem ∂Eψ
∂λ = 〈ψ|∂H

∂λ |ψ〉
Consider the forward case for the proton:
I Insert a new term into the Lagrangian

L(x)→ L(x) + λO(x)

I Calculate the energy of the proton with this new term:

G(λ,p, t) t�0−−→ A(λ)e−E(λ,p)t

I Feynman-Hellmann theorem relates the energy shift to
the matrix element:

∂E (λ,p)
∂λ

∣∣∣∣
λ=0

= 1
2E 〈P(p)|O(0)|P(p)〉

How does the energy shift dE behave at small λ?
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Feynman-Hellmann theorem ∂Eψ
∂λ = 〈ψ|∂H

∂λ |ψ〉
I At λ = 10−4,−10−5 the energy shift behaves linearly with
λ

I Can now calculate matrix elements by using only lattice
two-point functions.

[Chambers 2017]
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https://arxiv.org/abs/1702.01513


Feynman-Hellmann theorem ∂Eψ
∂λ = 〈ψ|∂H

∂λ |ψ〉

Electromagnetic form factors at large momentum
I Insert a term with vector current into the Lagrangian

L(x)→ L(x) + 2λcos(q · x)q̄(x)γµq(x)

I Requirement: Breit frame is necessary here.

Since we want to access high Q2, setting p = −p′ will
satisfy this and keep noise to a minimum

I Using the temporal current: dEp(p,γ4)
dλ

∣∣∣∣
λ=0

= mp
Ep(p)GE ,p(Q2)

I Using the spatial current: dEp(p,σ,γ2)
dλ

∣∣∣∣
λ=0

= [q×ê]2
2Ep(p)GM,p(Q2)
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Ratio of two-point functions
How do we best extract the shift in the energy ?

Construct a ratio of forwards and backwards propagating
states with opposite parity projections which gives the energy
shift in the large time limit.

RE ,p(λ,±p, t) ≡
∣∣∣∣∣G+(λ,±p, t)
G+(0,±p, t)

G−(0,±p,−t)
G−(λ,±p,−t)

∣∣∣∣∣
1
2

large t−−−→ B(λ)e∆E(λ)t

Good fit for low
momentum transfer and
heavy quark masses.
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Excited states
Include the excited states in the fitting function to be able to
include earlier timeslices in the fitting range.

RE ,p(λ,±p, t) ≡
∣∣∣∣∣G+(λ,±p, t)
G+(0,±p, t)

G−(0,±p,−t)
G−(λ,±p,−t)

∣∣∣∣∣
−→
∣∣∣∣∣ (A0 + ∆A0)e−(E0+∆E0)t + (A1 + ∆A1)e−(E1+∆E1)t

(A0 −∆A0)e−(E0−∆E0)t + (A1 −∆A1)e−(E1−∆E1)t

∣∣∣∣∣

Need 4 parameters from
the fit to the ratio:
∆A0,∆A1,∆E0,∆E1
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Weighted average of fits

I Include fits with several different tmin values and give
them weighting based on [NPL/QCDSF, PRD 2020]

Ē0 =
N∑

f =1
w f E f

0

pf = Γ(Ndof /2, χ2
f /2)

Γ(Ndof /2)

w̃ f =
pf
(
δE f

0

)−2

∑N
f ′=1 pf ′

(
δE f ′

0
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10 / 17

Nconf = 1500, 323 × 64, mπ ≈ 470MeV

ArXiv:2003.12130


Three-point functions
How does this method compare to the usual

three-point functions?

Recalculate the electromagnetic form factors of the nucleon
with three-point functions on the same lattice and using the
same breit frame momenta to facilitate an exact comparison.
I UKQCD/QCDSF ensembles with Nf = 2 + 1
I L3 × T = 323 × 64, a = 0.074 fm, mπ ≈ 470MeV
I source-sink separations: 0.74 fm, 0.96 fm, 1.18 fm
I Same Breit frame momenta as the Feynman-Hellmann

calculation
I Use a two-exponential fit to the three source-sink

separations
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Proton Form Factors
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Nconf = 1500, 323 × 64, mπ ≈ 470MeV



Flavour symmetry breaking
I We use the flavour breaking expansion analysis from

[Bickerton et al, PRD 2020] to extrapolate our results to
the physical quark masses.

I Calculate seven Di quantities and five Fi from the form
factors and fit to these as functions of the δml .

m̄ = 1
3(mu + md + ms), δm ≡ mq − m̄

D1 = −(AN̄ηN + AΞ̄ηΞ)
D2 = AΣ̄ηΣ

D3 = −AΛ̄ηΛ

F1 = 1√
3

(AN̄ηN − AΞ̄ηΞ)

F2 = (AN̄ηN + AΞ̄πΞ)
F3 = AΣπΣ
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https://arxiv.org/abs/1909.02521


Flavour symmetry breaking

XD = 1
6(D1 + 2D2 + 3D4), XF = 1

6(3F1 + F2 + 2F3)
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Nconf = 1500, 323 × 64, mπ = 310− 466 MeV



Flavour symmetry breaking
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Nconf = 1500, 323 × 64, mπ = 310− 466 MeV



Flavour symmetry breaking

0 2 4 6 8

Q2(GeV2)

0.00

0.25

0.50

0.75

1.00

G
E
,p

(Q
2
)

GE,p(Q
2)

(κl, κs) = (0.122005, 0.122005)

(κl, κs) = (0.122078, 0.121859)

(κl, κs) = (0.122130, 0.121756)

Physical point

0 2 4 6 8

Q2(GeV2)

0.00

0.25

0.50

0.75

1.00

G
M
,p

(Q
2
)

GM,p(Q
2)

(κl, κs) = (0.122005, 0.122005)

(κl, κs) = (0.122078, 0.121859)

(κl, κs) = (0.122130, 0.121756)

Physical point

0 2 4 6 8

Q2(GeV2)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

G
E
/G

M
(Q

2
)

Physical point

16 / 17

Nconf ≈ 800− 1000, 483 × 96, mπ = 310− 466 MeV



Conclusion
I The Feynman-Hellmann approach allows for the

calculation of form factors at high momentum.
I Including the contributions from excited states in the fits

makes the analysis more reliable across quark masses and
momenta.

Next steps:
I Include more quark masses to further constrain the

extrapolation to the physical point
I Increase Nconf for lighter quark masses to improve the

uncertainties on the results
I Investigate the lattice spacing dependence of the results
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