Our Results

Variations to the z-Expansion of the Form Factor Describing the Decay of B Mesons

Daniel Simons¹

Erik Gustafson¹

Yannick Meurice¹

A ID > A (P) > A

¹Department of Physics University of Iowa

The 38th International Symposium on Lattice Field Theory

Our Results

The University

Introduction

• Using differential decay data collected from the Belle Collaboration to study the parameterizations of the form factor describing the decay: $B^0 \rightarrow D^- \ell^+ \nu_\ell$

(R. Glattauer et al. (Belle Collaboration), PRD 93 (2016))

Figure: Edited copy from E. Waheed et al., PRD 100 (2019)

• Form factor is a function of hadronic recoil w $w = \frac{P_B \cdot P_D}{m_B m_D} = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$

< □ > < □ > < □

Goals

- Looking at the fits in the lattice regime
 - Hadronic recoil: w ≤ 1.24
 - Useful for Monte Carlo Simulations (Lattice QCD)
- Which parameterization of the form factor produces the best results?
- How many data points are needed to include in the fit to accurately predict the remaining data?
- How well do lattice-QCD calculation results fit this data?
- Looking at the χ^2 values of my fits
 - $\chi^{\rm 2}_{\it fitted}$ and $\chi^{\rm 2}_{\it predicted}$

< □ > < 同 > < Ξ

Theory: Decay Rate

• The differential decay rate describing this decay (R. Glattauer et. al, PRD 93, 032006 (2016))

$$rac{d\Gamma}{dw} = rac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \eta_{EW}^2 |V_{cb}|^2 |G(w)|^2$$

- We considered 3 parameterizations of the form factor G(w)
 - 1. BGL (uses z-expansion)
 - 2. BCL (uses z-expansion)
 - 3. CLN

Theory: BGL

Theory

Our Results

Conclusion

 Boyd, Grinstein and Lebed (BGL) Parameterization (R. Glattauer et. al, PRD 93, 032006 (2016)):

$$G(w)^{2} = \frac{4r}{(1+r)^{2}} f_{+}(w)^{2}$$
$$f_{+}(z) = \frac{1}{\sqrt{2}} \sum_{k=1}^{N} a_{+k} z^{k}$$

$$\phi_+(z) = \phi_+(z) \sum_{n=0}^{\infty} \alpha_{+,n} z$$

$$z(w) = rac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \; ; \; r = rac{m_D}{m_B}$$

 $\phi_{+}(z) = 1.1213(1+z)^{2}(1-z)^{1/2}[(1+r)(1-z) + 2\sqrt{r}(1+z)]^{-5}$

Our Results

Conclusion

UNIVERSITY

Theory: BCL

 Bourrely, Caprini, and Lellouch (BCL) Parameterization (C. Bourrely, I. Caprini, and L. Lellouch, PRD 79, 013008 (2010)):

$$G(w)^2 = \frac{4r}{(1+r)^2} f_+(w)^2$$

$$f_{+}(z) = \frac{1}{P_{+}(z)} \sum_{n=0}^{N-1} \frac{b_{+,n}}{(z^{n} - (-1)^{n-N} \frac{n}{N} z^{N})}$$

$$egin{aligned} z(q^2) &= rac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \ ; \ r &= rac{m_D}{m_B} \ P_+(z) &= 1 - rac{q^2(z)}{m_{B_c^*}^2} \end{aligned}$$

Our Results

< □ > < □ > < □ > < □ >

Conclusion

HE UNIVERSITY

Theory: BCL Continued

BCL Parameterization:

$$t_+ = (m_B + m_D)^2$$

 $t_0 = (m_B + m_D) \left(\sqrt{m_B} - \sqrt{m_D}\right)^2$

Using an estimated value for m_{B^{*}_c} from (Q. Li et. al, PRD 99, 096020 (2019))

$$m_{B_c^*}=6.326~{
m GeV}$$

Theory: CLN

< □ > < □ > < □

$$G(z) = \frac{G(1)}{(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3)}$$

• Fixed number of fit parameters: G(1) and ρ^2

(日)、(四)、(目)、(

- Using Least-Square-Fitting methods, we fit the free parameters of the different parameterizations:
 - 1. BGL: *a*_{+,0} and *a*_{+,1}
 - 2. BCL: **b**_{+,0} and **b**_{+,1}
 - 3. CLN: G(1) and ρ^2
- Using the $\chi^2_{reduced}$ values from our fits to determine the accuracy of the fit and its predictiveness
 - $\chi^2_{\it reduced, fitted}$ and $\chi^2_{\it reduced, predicted}$

Results: BGL

Theory 00000 Our Results

Conclusion

THE UNIVERSITY OF IOWA

$$f_{+,BGL}(z) = \frac{1}{\phi_+(z)} \sum_{n=0}^N a_{+,n} z^n$$

BGL $\chi^2_{reduced}$ Values			
w-range for fit	# of points used in fit	$\chi^2_{reduced, fitted}$	$\chi^2_{reduced, predicted}$
<i>w</i> ≤ 1.09	2		2844.9767
<i>w</i> ≤ 1.15	3	0.5923	20.3533
<i>w</i> ≤ 1.21	4	0.4018	0.4906
<i>w</i> ≤ 1.27	5	0.3761	10.3272
<i>w</i> ≤ 1.33	6	0.3944	1.2176
<i>w</i> ≤ 1.39	7	0.3793	0.1660
<i>w</i> ≤ 1.45	8	0.3434	0.3218
<i>w</i> ≤ 1.51	9	0.3243	0.3300

Our Results

Conclusion

Results: BGL Continued

Results: BCL

Theory 00000 Our Results

Conclusion

< □ > < □ > < ≥ > < 100 CF LOWA

$f_{+,BCL}(z) = \frac{1}{P_{+}(z)} \sum_{n=0}^{N-1} \frac{b_{+,n}}{(z^{n} - (-1)^{n-N} \frac{n}{N} z^{N})}$

BCL $\chi^2_{reduced}$ Values			
w-range for fit	# of points used in fit	$\chi^2_{reduced, fitted}$	$\chi^2_{reduced, predicted}$
<i>w</i> ≤ 1.09	2		2137.4863
<i>w</i> ≤ 1.15	3	0.5965	25.9358
<i>w</i> ≤ 1.21	4	0.4167	0.4507
<i>w</i> ≤ 1.27	5	0.4116	5.6754
<i>w</i> ≤ 1.33	6	0.3908	0.4200
<i>w</i> ≤ 1.39	7	0.3543	0.2445
<i>w</i> ≤ 1.45	8	0.3071	0.6166
<i>w</i> ≤ 1.51	9	0.3264	0.1194

Our Results

Conclusion

Results: BCL Continued

Results: CLN

Theory 00000 Our Results

Conclusion

$G_{CLN}(z) = G(1) \left(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3 \right)$

CLN $\chi^2_{reduced}$ Values			
w-range for fit	# of points used in fit	$\chi^2_{reduced, fitted}$	$\chi^2_{reduced, predicted}$
<i>w</i> ≤ 1.09	2		1934.0241
<i>w</i> ≤ 1.15	3	0.5954	17.8212
<i>w</i> ≤ 1.21	4	0.4161	0.5545
<i>w</i> ≤ 1.27	5	0.4060	10.1728
<i>w</i> ≤ 1.33	6	0.4020	1.8833
<i>w</i> ≤ 1.39	7	0.3874	0.3951
<i>w</i> ≤ 1.45	8	0.3627	0.2266
<i>w</i> ≤ 1.51	9	0.3210	0.7370

Our Results

Conclusion

Results: CLN Continued

Our Results

Conclusion

Using Results from Lattice Calculations

- Using the results of Lattice-QCD calculations for the free parameters of the BGL parameterization given from (J. A. Bailey and et. al, PRD 92, 014024 (2015))
 - *a*_{+,0} and *a*_{+,1}
- Using these free parameters as priors for python least square fitting function
- Uncertainties in their parameters are so low, the fit is over-constrained
- Scaled the uncertainties up by a factor of 30 (still very small)

Our Results 0000000000

Results: BGL with Lattice Data

$$f_{+,BGL}(z) = \frac{1}{\phi_+(z)} \sum_{n=0}^N a_{+,n} z^n$$

BGL $\chi^2_{reduced}$ Values with Lattice Priors			
w-range for fit	# of points used in fit	$\chi^2_{reduced, fitted}$	$\chi^2_{reduced, predicted}$
<i>w</i> ≤ 1.09	2	_	3.2982
<i>w</i> ≤ 1.15	3	0.8136	0.6562
<i>w</i> ≤ 1.21	4	0.4254	1.6925
<i>w</i> ≤ 1.27	5	0.3734	10.1269
<i>w</i> ≤ 1.33	6	0.3921	1.5060
<i>w</i> ≤ 1.39	7	0.3720	0.1885
<i>w</i> ≤ 1.45	8	0.3353	0.3046
<i>w</i> ≤ 1.51	9	0.3186	0.3312
	·		► < □ ► < = ► < □ FIE UNIVE

Our Results

Conclusion

Results: BGL with Lattice Data Continued

Conclusion

(日)、(四)、(三)

w-range for fit	BGL $\chi^2_{reduced, predicted}$	BGL $\chi^2_{reduced, predicted}$ with Lattice Data	BCL $\chi^2_{reduced, predicted}$
<i>w</i> ≤ 1.15	20.3533	0.6562	25.9358
<i>w</i> ≤ 1.21	0.4906	1.6925	0.4507
<i>w</i> ≤ 1.27	10.3272	10.1269	5.6754
<i>w</i> ≤ 1.33	1.2176	1.5060	0.4200

- BCL has primarily not been used to study the decay $B^0 \rightarrow D^- \ell^+ \nu_\ell$, but it appears to slightly outperform BGL in the lattice regime
- The χ²_{reduced,predicted} spike for w ≤ 1.27 warrants further investigation to determine minimum number of points for accurate fit
- The results of lattice-QCD calculations appear to also fit this data well

Introduction and Goals

The End Thank you! Theory 00000 Our Results

Conclusion

Questions?

< □ > < 🗗 > < 🖹 > < 🖬 flag University