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Energy & Two-point Correlation Functions

e Directly calculate hadron energies in an external magnetic
field

* The energy of a pion in an external magnetic field is
E2(B)=m, +(2n+1) |geB| —4nmy 5, |BE+0O (33)

¢ Periodic spatial boundary conditions impose a quantisation
for a uniform field

2 2
acqgeB _NxNy

* kg =0,1,2,... for the field strength experienced by the d
quark

|\

R. Bignell Pion Magnetic Polarisabilities Lattice 2021 2/18




Wilson Term Mass Renormalisation

e Wilson term causes unphysical quark mass
renormalisation in background magnetic field

¢ In free-field limit this change is

a
My (B) = m(0) + 3 |qe Bl

e First discussed by Bali et al. 1510.03899, 1707.05600
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https://arxiv.org/abs/1510.03899
https://arxiv.org/abs/1707.05600

Background field corrected clover action

¢ Allow QCD and electromagnetic field strengths to have
different clover coefficients

NP ~QCD EM
CC/ — CSW FNV + CEM FNV

e and set Cgy such that Wilson Landau shift is cancelled

Tree
Cem = Cgyy

¢ Details may be found in our paper, 1910.14244
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https://arxiv.org/abs/1910.14244

Quark Operators

e Standard lattice QCD interpolators are inefficient at
isolating energy eigenstates in a background magnetic field
® Quarks are charged!
» Quarks experience Landau type effects
» QCD causes quarks to hadronise for composite
Landau energy
e Competing effects, introduce a quark projection operator
that includes QCD and QED
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SU(3) x U(1) Projection Operator
¢ Two-dimensional lattice Laplacian operator

Ay =40z — Y Uu(X) Szpp0 + UL (X = 1) 03_p5,
n=12

e Use low-lying eigenmodes of the 2D Laplacian (w,-g)to
project the propagator

n

Po(%.6%.0) = (%,

=1

i,§> (V15| X' 1) 02z b

* Projected propagator is

2(X, £:0,0) Zantxt S(X',t,0,0)
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Neutral Pion

e Consider the neutral (connected pion) g5 g
» for g =tu = n and dd = 79

¢ This approach is common in the literature due to the
expense of including disconnected contributions of the full
neutral pion
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[ 70 Energy Shifts
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* Fit to these energy shifts E2(B) — m2

™

(E,o(B) — myo)(Eyo (B)+myo)=—4nm,3.0B%=cok?

s ™

* where k is the field quanta from background magnetic field
quantisation condition
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[0 Polarisability Fitting
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Hadronic Landau Projection

e Charged particles such as =+ experience hadronic level
Landau effects

¢ In external magnetic field along 2-axis

» Energy eigenstates of 7™ are no longer eigenstates of
Px, Py momentum components

* Hence project (x, y) dependence of correlator onto lowest
Landau level

G (pzB.1) =D vg(x. y) P (QIT{X(r.1) X (0)}|2)
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n Energy Shift ‘
12 0.4
11 0.3
Sto T s
S S
S | L e ey s 011 4 4 4 ¢ s+ b e e s
+ 09 I
W | s b 4 4 W 00
e =1 Xr= = =3, Xor= = -01 Ko =1, X3or=0.44, len =9 Ko=3, X3 =0.57, len =9
07 = "“2"'0: — 25 30 35 —02 — "2":' — 25 30 35
t t
* Fit to these energy shifts E2(B) — m2
E2(B) —m? — |geB| = 47 m, 3, B = ¢y k?
* where k is the field quanta from background magnetic field
quantisation condition
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[t Polarisability Fits for four masses R
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Connection to Physical

Chiral extrapolatis

of the charged-pion magnetic
approximant
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‘The magnetic polarizability of the neutral pion has been calculated in the background magnetic-field
formalism of lattice QCD. Tn this investigation, the chiral extrapolation of these lattice results is considered
in a formalism preserving the exact leading nonanalytic terms of chiral perturbation theory. The =2+ 1
‘numerical simulations are electro-quenched, such that the virtual sea quarks of the QCD vacuum do not
interact with the background field. To understand the impact of this, we draw on partally quenched chiral
perturbation theory and identify the leading contributions of quark-flow connected and disconnected
diagrams. While clectroquenching does not impact the leading-loop contribution to the magnetic.
polarizability, the loops which generate the leading term have yet to be considered in lttice QCD.
simulations. Lattice QCD results are used to constrain the analytic terms in the chiral expansion and
supplementing those with the two-loop result from chiral perturbation theory enables an evaluation of the
polarizability at the physical quark mass. The resulting magnetic polarizability of the neutral pion is
A4(19)"(37)7* x 10 fm’, which lies just above the 1o error bound of the experimental
measurement
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Disconnected Contributions to 6”0

e Neutral pion operator is

ﬂozé (uti — dd)

* Hence the following wick contractions are produced
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Summary

* Resolved the additive mass renormalisation problem due
to the Wilson term in a background magnetic field

e Specialised projection techniques have been used to
account for Landau effects

» Enabling energy shift plateaus

¢ Performed the first systematic exploration of the mass
dependence of the magnetic polarisabilities of the 7% and
7 using lattice QCD 2005.10453

¢ Techniques are applicable to further elements of the
hadronic spectrum 2002.07915
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https://arxiv.org/abs/2005.10453
https://arxiv.org/abs/2002.07915

BONUS SLIDES

Disconnected Methods in Lattice QCD

¢ Construct sets of random noise {n} from Z, such that

<773a (x) 772;5 (Y)> = Oxy 0ab 0ap

e Corresponding solution vectors are (where M is the
fermion matrix)

x=M"Tny
* Hence fermion propagator is
Satas (%:¥) = (Xau (%) 1 (1))

e This is an expensive and noisy process!
» Necessary as standard point-to-all process for all x is
infeasibly expensive
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BONUS SLIDES

Connected 7° Polarisability

® In our mass degenerate lattice simulation
520 (B/2) = 520 (B)
T Ty
* and so, allowing tiu and dd to have differing magnetic
polarisabilities gives
Py =450

¢ Estimate the magnetic polarisability of the full connected
70 as the average of PBroand fro
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BONUS SLIDES

Results

Table: Magnetic polarisability values for the pion at each quark mass
considered.

m. (GeV) a(fm) BT (x1074fm®) B (x10~*fm®) B (x10~*fm?)

0.702  0.1023 0.255(56) 0.900(17) 2.25(5)
0.570  0.1009 0.275(54) 0.872(16) 2.18(4)
0.411  0.0961 0.355(62) 0.766(33) 1.92(9)
0.296  0.0951 0.35(11) 0.754(35) 1.89(9)
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Figure: A description of lattice QCD results for the magnetic
polarisability of the neutral pion, Bfo, in terms of the leading tree-level
terms of chiral effective field theory. Figure from 2010.01580.
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Figure: The full QCD prediction for the magnetic polarizabil- ity of the
neutral pion .0 (red curve). The previous fit (blue curve) of the lattice
QCD simulation results (black points) has been corrected to
incorporate pion-loop contributions ab- sent in the current simulation
results (red curve).... Figure from 2010.01580.
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