Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

Sp(2*N*) gauge theories on the lattice: status and perspectives

Biagio Lucini

(with E. Bennett, J. Holligan, D.K. Hong, H. Hsiao, J.-W. Lee, C.-J. David Lin, M. Mesiti, M. Piai and D. Vadacchino)

Lattice 2021, MIT (Virtual), 30th July 2021

Motivations

5...

Higgs (Com-
positen	ess in
Sp(2N)	– P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

- Fundamental mechanism for electroweak symmetry breaking
- 2 Dark matter/dark energy
- Insights on gauge dynamics
 - Connections with analytic frameworks
- All important, but this talk will focus on motivations related to Dynamical Electroweak Symmetry Breaking (DEWSB)

▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

The DEWSB framework

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook Motivation: provide a fundamental Electroweak Symmetry Breaking Mechanism based on strong dynamics that solves the hierarchy problem

Consider a gauge theory with some gauge group \mathcal{G}' coupled to fermionic matter

Global symmetry group \mathcal{G} spontaneously broken to $\mathcal{H} \subset \mathcal{G}$ \Rightarrow Number of Goldstone bosons: dim $_{\mathcal{G}}$ - dim $_{\mathcal{H}}$

Gauge some $\mathcal{H}' \subset \mathcal{G}$ such that $SU(2)_L \otimes U(1)_Y \subset H'$

Two main possible scenarios:

- Technicolour if $\mathcal{H}' \cap \mathcal{H} \neq \mathcal{H}'$
- Pseudo-Nambu-Goldstone-Boson (PNGB) Higgs if $\mathcal{H}' \subset \mathcal{H}$

The Higgs as a PNGB

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

Little Hierarchy Problem: if the Higgs boson is composite, how can its mass be significantly lower than that of other states of the novel strong interaction?

Possible solution: the Higgs is a PNGB arising from the global symmetry breaking (GSB) of the new strong interaction [Kaplan and Georgi, 1984]

Patterns of GSB $G \mapsto H$ for a theory with N_f Dirac fermions

1	SU(N) gauge group:	$SU(N_f)_V \times SU(N_f)_A \mapsto SU(N_f)_V$
2	Real gauge group:	$SU(2 N_f) \mapsto SO(2 N_f)$
3	Pseudoreal gauge group:	$SU(2 N_f) \mapsto Sp(2 N_f)$

Embedding of the standard model: $SU(2)_L \times U(1)_Y \subset H \subset G$ \hookrightarrow The physical Higgs is identified with four of the pions

Partial Top Compositeness [Kaplan, 1991]: the mixing between the top quark and a hybrid (chimera) baryon, formed by fermions in two different representations, can explain the large mass of the top quark itself Necessary conditions: large anomalous dimension of the chimera baryon

Hunting for candidate models

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

Coset	HC	ψ	χ	$-q_\chi/q_\psi$	Baryon	Name	Lattice
SU(5) SU(6)	SO(7) SO(9)	$5 imes \mathbf{F}$	$6 \times \mathbf{Sp}$	5/6 5/12	$\psi \chi \chi$	M1 M2	
$\overline{\mathrm{SO}(5)} \wedge \overline{\mathrm{SO}(6)}$	SO(7) SO(9)	$5 imes \mathbf{Sp}$	$6 \times F$	$\frac{5}{6}$ $\frac{5}{3}$	$\psi\psi\chi$	M3 M4	
$\boxed{\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}}$	Sp(4)	$5 \times \mathbf{A}_2$	$6\times {\bf F}$	5/3	$\psi \chi \chi$	M5	\checkmark
$\boxed{\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}}$	SU(4) SO(10)	$5 \times \mathbf{A}_2$ $5 \times \mathbf{F}$	$\begin{array}{l} 3\times ({\bf F},\overline{{\bf F}})\\ 3\times ({\bf Sp},\overline{{\bf Sp}}) \end{array}$	$5/3 \\ 5/12$	$\psi \chi \chi$	M6 M7	\checkmark
$\boxed{\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)}\times\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}}$	Sp(4) SO(11)	$4 \times \mathbf{F}$ $4 \times \mathbf{Sp}$	$6 \times \mathbf{A}_2$ $6 \times \mathbf{F}$	$\frac{1/3}{8/3}$	$\psi\psi\chi$	M8 M9	\checkmark
$\boxed{\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)}\times\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}}$	SO(10) SU(4)	$\begin{aligned} 4\times(\mathbf{Sp},\overline{\mathbf{Sp}}) \\ 4\times(\mathbf{F},\overline{\mathbf{F}}) \end{aligned}$	$\begin{array}{l} 6\times \mathbf{F} \\ 6\times \mathbf{A}_2 \end{array}$	$\frac{8/3}{2/3}$	$\psi\psi\chi$	M10 M11	\checkmark
$\frac{SU(4)^2}{SU(4)}\times \frac{SU(3)^2}{SU(3)}$	SU(5)	$4\times ({\bf F},\overline{{\bf F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}_2})$	4/9	$\psi\psi\chi$	M12	

G. Ferretti and T. Karataev, arXiv:1312.5330

J. Barnard, T. Gherghetta and T. S. Ray, arXiv:1311.6562

G. Cacciapaglia, G. Ferretti, T. Flacke and H. Serodio, arXiv:1902.06890

The lattice programme (Bennett et al., arXiv:1712.04220)

Higgs Compositeness in Sp(2N) - P1

Goal: establish whether the $SU(4) \mapsto Sp(4)$ global symmetry breaking pattern is viable as a mechanism of DFWSB

Target calculation

DEWSB

Sp(4) gauge theory with two fundamental Dirac flavours and three antisymmetric Dirac flavours

compute spectral observables and decay constants 2

extract parameters of the effective field theory

compare with experiments

Needed validations

Study the pure gauge model

- Compute the quenched spectrum
- Study separately the gauge system with fundamental dynamical matter only and with antisymmetric dynamical matter only

Perform calculations of the chimera baryon in a quenched and partially quenched setup

Status: most of the validation calculations have been completed or are nearly completed, and initial exploratory results for the target calculations are available (Earlier exploration of Sp(2N) at finite temperature: Holland, Pepe and Wiese, hep-lat/0312022) ◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - の々ぐ

The glueball spectrum for $Sp(\infty)$

イロン 不得 とくほ とくほ とうほ

[E. Bennett et al., arXiv: 2010.15781]

The quenched spectrum of Sp(4) Yang-Mills

Numerical Results

Conclusions and outlook

Glueball data from E. Bennett *et al.*, arXiv: 2010.15781 Meson data from E. Bennett em et al., arXiv:1912.06505

$N_f = 2$ Meson spectrum: quenched vs unquenched

Motivations

DEWSB

Numerical Results

Conclusions and outlook

[E. Bennett et al., arXiv:1909.12662]

$N_f = 2$ decay constants: quenched vs unquenched

Higgs Com-

Numerical Results

Conclusions and outlook

[E. Bennett et al., arXiv:1909.12662]

Conclusions and outlook

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

- Strongly interacting theories other than QCD are relevant for both phenomenology and theory
- Motivated originally by phenomenology, we have started a comprehensive programme of investigations in Sp(2N) models
- The string tension and the glueball spectrum have been studied in pure Yang-Mills in the large-*N* limit, yielding values that are compatible with the extrapolation of SU(*N*)
- The mesonic spectrum has been studied in Sp(4) in the quenched case, for fermions in the fundamental and in the antisymmetric representation
- Quenched results for the fundamental fermion case have been compared to the dynamical theory with $N_f = 2$
- In this conference, we shall discuss our progress for the following investigations:
 - Sp(4) with two fundamental and three antisymmetric dynamical fermions (J.-W. Lee)
 - Sp(4) with three antisymmetric dynamical fermions (H. Hsiao)
 - Quenched spectrum in Sp(4) and Sp(6) for the fundamental, symmetric and antisymmetric representation (J. Holligan)
 - Topology in Sp(2N) Yang-Mills (D. Vadacchino)

A full simulation of the target phenomenological model is now within reach