Sp(4) lattice gauge theory with fermions in multiple representations

Jong-Wan Lee (Pusan National University)

Work in progress with E. Bennett, J. Holligan, D. Hong, H. Hsiao, D. C.-J. Lin, B. Lucini, M. Mesiti, M. Piai, D. Vadacchino

The 38th International Symposium on Lattice Field Theory July 30, 2021

4D UV models for Comp. Higgs & partial-top

Coset	HC	ψ	χ	$-q_{\chi}/q_{\psi}$	Baryon	Name
	SO(7)	$5 imes \mathbf{F}$	$6 \times \mathbf{Sp}$	5/6	$\psi \chi \chi$	M1
$\frac{\mathrm{SU}(5)}{\mathrm{SU}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{SU}(6)}$	SO(9)			5/12		M2
SO(5) $SO(6)$	SO(7)	$5 \times Sp$	$6 \times F$	5/6	a/a/a	M3
	SO(9)	0 × 5P	0 / 1	5/3	$\Psi\Psi\lambda$	M4
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	$\operatorname{Sp}(4)$	$5 \times \mathbf{A}_2$	$6 imes \mathbf{F}$	5/3	$\psi \chi \chi$	M5
$SU(5)$ $SU(3)^2$	SU(4)	$5 imes \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	5/3		M6
$\overline{\mathrm{SO}(5)} \times \overline{\mathrm{SU}(3)}$	SO(10)	$5 \times \mathbf{F}$	$3 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	5/12	$\psi \chi \chi$	M7
SU(4) SU(6)	Sp(4)	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	1/3		M8
$\overline{\mathrm{Sp}(4)} \times \overline{\mathrm{SO}(6)}$	SO(11)	$4 \times \mathbf{Sp}$	$6 imes \mathbf{F}$	8/3	$\psi\psi\chi$	M9
$SU(4)^2$ SU(6)	SO(10)	$4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	$6 imes \mathbf{F}$	8/3		M10
$\overline{\mathrm{SU}(4)} \times \overline{\mathrm{SO}(6)}$	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	2/3	$\psi\psi\chi$	M11
$\boxed{\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)}\times\frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}}$	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}_2})$	4/9	$\psi\psi\chi$	M12

Composite Higgs + partial top compositeness

Cacciapaglia, Ferretti, Flacke & Serodio (2019)

				SU	$\mathcal{V}(4)_{E}$	3	$SU(4)_A$	
40/1	1				—	<u>S</u>	$ \Sigma$	
TDUN			0.58	·	1 112	50	0.58 0.58	
Coset	HC	ψ	χ 0.56	$-q_{\chi}/q_{\psi}$ I	Baryon	Name	0.56 Composite Higgs + 0.56	
$SU(5)$ \downarrow $SU(6)$	SO(7) SO(9)	$5 imes \mathbf{F}$	6 🍣 (Sp	$\frac{5/6}{5/12}$	$\psi \chi \chi$	M1 M2	0.54 partial top compositeness ↓ 0.54	
$\overline{\mathrm{SO}(5)} \wedge \overline{\mathrm{SO}(6)}$	SO(7) SO(9)	$5 imes \mathbf{Sp}$	0.52 6 × F 0.50	5/6 - 5/3	$\psi\psi\chi$	M3 M4	$\begin{bmatrix} 0.52 \\ 0.50 \end{bmatrix} = \begin{bmatrix} 0.52 \\ SU(4)/Sp(4) \end{bmatrix} \begin{bmatrix} 0.52 \\ 0.50 \end{bmatrix}$	
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	$\operatorname{Sp}(4)$	$5 imes \mathbf{A}_2$	$6 \times \mathbf{F}^{-1.18}$	$-1.16 / \overline{3}_{a m_0}^{1.14}$	$\overline{\psi}_{\chi\chi}^{1.12}$	-1.19 -1.19	4 of 5 PNGBs: Higgs doublets	-1.08 -
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$	$\begin{array}{c} \mathrm{SU}(4)\\ \mathrm{SO}(10) \end{array}$	$5 \times \mathbf{A}_2$ $5 \times \mathbf{F}$	$3 \times (\mathbf{F}, \overline{\mathbf{F}}) 3 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	5/3 5/12	$\psi \chi \chi$	M6 M7	$SU(2)_L \times U(1)_Y \subset Sp(4)$ $SM EW$	
$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	$\frac{\mathrm{Sp}(4)}{\mathrm{SO}(11)}$	$4 \times \mathbf{F}$ $4 \times \mathbf{Sp}$	$6 \times \mathbf{A}_2$ $6 \times \mathbf{F}$	1/3 8/3	$\psi\psi\chi$	M8 M9	$SU(3)_c \times U(1)_Y \subset SO(6)$ SM Strong	
$\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	SO(10) SU(4)	$4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$ $4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$ \begin{array}{l} 6 \times \mathbf{F} \\ 6 \times \mathbf{A}_2 \end{array} $	8/3 2/3	$\psi\psi\chi$	M10 M11	$ \begin{array}{ c c } \textbf{e.g. top partner} & \textbf{carry} \\ \hat{\Psi}^{a\alpha b} \equiv \begin{pmatrix} \psi^a \chi^\alpha \psi^b \end{pmatrix} & \textbf{color} \\ \textbf{charge} \end{array} $	
$\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f A}_2, \overline{{f A}_2})$	4/9	$\psi\psi\chi$	M12	Cacciapaglia, Ferretti, Flacke & Serodio (2019)	

Theory space of Sp(4) gauge group

Theory space of Sp(4) gauge group

Sp(4) on the lattice

Lattice formulation with the standard Wilson gauge & fermion actions

$$D^{AS}\Psi_k(x) \equiv (4/a + m_0^{as})\Psi_k(x) - \frac{1}{2a}\sum_{\mu} \left\{ (1 - \gamma_{\mu})U_{\mu}^{AS}(x)\Psi_k(x + \hat{\mu}) + (1 + \gamma_{\mu})U_{\mu}^{AS}(x - \hat{\mu})\Psi_k(x - \hat{\mu}) \right\}$$

where $U_{\mu}(x) = U_{\mu}^{F}(x) \in Sp(4)$ and $\left(U_{\mu}^{AS}\right)_{(ab)(cd)}(x) \equiv \operatorname{Tr}\left[(e_{AS}^{(ab)})^{\dagger}U_{\mu}(x)e_{AS}^{(cd)}U_{\mu}^{T}(x)\right], \text{ with } a < b, \ c < d.$ $\left(\begin{array}{ccc} 0 & 0 & 1 & 0 \end{array}\right)$

Here, e_{AS} is antisymmetric and Ω -traceless, where $\Omega = \Omega_{jk} = \Omega^{jk} \equiv \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$

Sp(4) on the lattice

Lattice formulation with the standard Wilson gauge & fermion actions

$$S = \underbrace{\beta}_{x} \sum_{\mu < \nu} \left(1 - \frac{1}{4} \operatorname{Re} \operatorname{Tr} U_{\mu}(x) U_{\nu}(x + \hat{\mu}) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}^{\dagger}(x) \right) + a^{4} \sum_{x} \overline{Q}_{j}(x) D^{F} Q_{j}(x) + a^{4} \sum_{x} \overline{\Psi}_{k}(x) D^{AS} \Psi_{k}(x) D^{F} Q_{j}(x) \equiv (4/a + m_{0}^{f}) Q_{j}(x) - \frac{1}{2a} \sum_{\mu} \left\{ (1 - \gamma_{\mu}) U_{\mu}^{F}(x) Q_{j}(x + \hat{\mu}) + (1 + \gamma_{\mu}) U_{\mu}^{F}(x - \hat{\mu}) Q_{j}(x - \hat{\mu}) \right\},$$

$$D^{AS}\Psi_k(x) \equiv (4/a + m_0^{as})\Psi_k(x) - \frac{1}{2a}\sum_{\mu} \left\{ (1 - \gamma_{\mu})U_{\mu}^{AS}(x)\Psi_k(x + \hat{\mu}) + (1 + \gamma_{\mu})U_{\mu}^{AS}(x - \hat{\mu})\Psi_k(x - \hat{\mu}) \right\}$$

where $U_{\mu}(x) = U_{\mu}^{F}(x) \in Sp(4)$ and $\left(U_{\mu}^{AS}\right)_{(ab)(cd)}(x) \equiv \operatorname{Tr}\left[\left(e_{AS}^{(ab)}\right)^{\dagger}U_{\mu}(x)e_{AS}^{(cd)}U_{\mu}^{T}(x)\right], \text{ with } a < b, \ c < d.$

Here, e_{AS} is antisymmetric and Ω -traceless, where $\Omega = \Omega_{jk} = \Omega^{jk} \equiv \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$

Simulation details

HiRep code with appropriate modifications: Del Debbio, Patella & Pica (2008)

- resymplectisation *E. Bennett el al (2017)*
- verticed matrix E. Bennett el al (2018)
- antisymmetric representation *E. Bennett el al (2019)*
- multiple representations (fund. + two-index rep.)
 This work
- Using HMC (RHMC) algorithms, we simulate lattice Sp(4) theory coupled to both $N_f=2 F \& n_f=3 AS$ Dirac fermions.
- For the exploratory studies of hadron spectrum we have used point sources while leaving more sophisticated measurements in our future work.

From our previous studies of $N_f=2$ F Sp(4) & $n_f=3$ AS Sp(4) we learned that 1st order bulk phase transitions exist for $\beta \leq 6.7$ & $\beta \leq 6.5$, respectively.

E. Bennett el al (2018) JWL el al (2019)

From our previous studies of $N_f=2$ F Sp(4) & $n_f=3$ AS Sp(4) we learned that 1st order bulk phase transitions exist for $\beta \leq 6.7$ & $\beta \leq 6.5$, respectively.

If both $N_{f=2} F \& n_{f=3} AS$ Dirac fermions are present, the weak coupling region is extended to the smaller beta value of $\beta \sim 6.4$.

Results II: Fínite Volume effects

Finite volume effects are expected to be negligible if $7 \leq m_{\rm PS}^f L \& 11 \leq m_{\rm PS}^{as} L$.

 $\beta = 6.5, \ a m_0^{as} = -1.01, \ a m_0^f = -0.71$

Results II: Fíníte Volume effects

The different signs of finite volume effects can be understood from thelow-energy effective field theory.Bijnens & Lu (2009)

$$m_{\rm PS}^2 = M^2 \left(1 + a_M \frac{A(M) + A_{\rm FV}(M)}{F^2} + b_M(\mu) \frac{M^2}{F^2} + \mathcal{O}(M^4) \right)$$

$$A(M) = -\frac{M^2}{16\pi^2} \log \frac{M^2}{\mu^2} \qquad A_{\rm FV}(M) \stackrel{ML \gg 1}{\longrightarrow} -\frac{3}{4\pi^2} \left(\frac{M\pi}{2L^3}\right)^{1/2} \exp[-ML]$$

$SU(2N_f) \to Sp(2N_f)$	$SU(2N_f) \rightarrow SO(2N_f)$	$SU(N_f) \times SU(N_f) \to SU(N_f)$
$a_M = -\frac{1}{2} - \frac{1}{N_f}$	$a_M = \frac{1}{2} - \frac{1}{2N_f}$	$a_M = -\frac{1}{N_f}$
-1 (N _f =2 F)	1/3 (n _f =3 AS)	

Chimera baryon as top partner

Recall the global symmetry and its spontaneous breaking

 $SU(4)/Sp(4) \otimes SU(6)/SO(6)$

where SO(4) subgroup of $Sp(4) \sim SU(2)_L$ gauge group in SM & SU(3) subgroup of $SO(6) \sim SU(3)_c$ gauge group in SM

Then, the top partner can be sourced by the operators

$$\mathcal{O}_{\mathrm{CB},1}^{L,R} = \left(\overline{Q^{1\,a}}\gamma^5 Q^{2\,b} + \overline{Q^{2\,a}}\gamma^5 Q^{1\,b}\right)\Omega_{bc}P_{L,R}\Psi^{k\,ca},$$

$$\mathcal{O}_{\mathrm{CB},2}^{L,R} = \left(-i\overline{Q^{1\,a}}\gamma^5 Q^{2\,b} + i\overline{Q^{2\,a}}\gamma^5 Q^{1\,b}\right)\Omega_{bc}P_{L,R}\Psi^{k\,ca}$$

$$\mathcal{O}_{\mathrm{CB},4}^{L,R} = -i\left(\overline{Q^{1\,a}}Q_C^{2\,b} + \overline{Q_C^{2\,a}}Q^{1\,b}\right)\Omega_{bc}P_{L,R}\Psi^{k\,ca}$$

$$\mathcal{O}_{\mathrm{CB},5}^{L,R} = i\left(-i\overline{Q^{1\,a}}Q_C^{2\,b} + i\overline{Q_C^{2\,a}}Q^{1\,b}\right)\Omega_{bc}P_{L,R}\Psi^{k\,ca}.$$

which transform 3 of $SU(3)_c$ and 4 of SO(4).

Chimera baryon as top partner

Recall the global symmetry and its spontaneous breaking

 $SU(4)/Sp(4) \otimes SU(6)/SO(6)$

where SO(4) subgroup of $Sp(4) \sim SU(2)_L$ gauge group in SM & SU(3) subgroup of $SO(6) \sim SU(3)_c$ gauge group in SM

We also consider the $U(1)_A$ counterparts ($\mathbb{1} \to i\gamma^5$, expected to be heavier)

$$\mathcal{O}_{\mathrm{CB},1}^{\prime L,R} = i \left(\overline{Q^{1a}} Q^{2b} + \overline{Q^{2a}} Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca} ,$$

$$\mathcal{O}_{\mathrm{CB},2}^{\prime L,R} = \left(\overline{Q^{1a}} Q^{2b} - \overline{Q^{2a}} Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca} ,$$

$$\mathcal{O}_{\mathrm{CB},4}^{\prime L,R} = \left(\overline{Q^{1a}} \gamma^5 Q_C^{2b} + \overline{Q_C^{2a}} \gamma^5 Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca} ,$$

$$\mathcal{O}_{\mathrm{CB},5}^{\prime L,R} = i \left(\overline{Q^{1a}} \gamma^5 Q_C^{2b} - \overline{Q_C^{2a}} \gamma^5 Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca} ,$$

which transform 3 of $SU(3)_c$ and 4 of SO(4).

See Talk by H. Hsiao

Interpolating operators for Chimera baryon

Analogous to the Lambda baryon in QCD, we construct the interpolating operator of a spin-1/2 Chimera baryon as

 $\mathcal{O}_{\mathrm{CB},\,\alpha}^{k}(x) = -i(C\gamma^{5})^{\beta\gamma}\Omega_{ac}\Omega_{bd}Q_{\beta}^{2a}(x)Q_{\gamma}^{1b}(x)\Psi_{\alpha}^{k\,cd}(x)$

Then, the 2-point correlation function is

 $\langle \mathcal{O}_{\rm CB}(t)_{\gamma} \overline{\mathcal{O}_{\rm CB}(0)}_{\gamma'} \rangle = \sum_{\vec{x}} \Omega_{da} \Omega_{bc} \Omega^{c'b'} \Omega^{a'd'} S_{\Psi}(t, \vec{x})^{ca, c'a'}_{\gamma, \gamma'} S_Q^2(t, \vec{x})^{d, b'}_{\alpha, \alpha'} (C\gamma^5)_{\alpha\beta} S_Q^1(t, \vec{x})^{b, d'}_{\beta, \beta'} (C\gamma^5)_{\alpha'\beta'} S_Q^{\alpha'\beta'} S_Q^{\alpha'$

where the fermion propagators in given representations are

$$S_Q(t,\vec{x})^{a,b}_{\alpha,\beta} = \langle Q(t,\vec{x})^a_{\alpha} \overline{Q(0)^b}_{\beta} \rangle \text{ and } S_{\Psi}(t,\vec{x})^{ab,cd}_{\alpha,\beta} = \langle \Psi(t,\vec{x})^{ab}_{\alpha} \overline{\Psi(0)^{cd}}_{\beta} \rangle.$$

We also consider the parity projections in the nonrelativistic limit.

$$\mathcal{O}_{\mathrm{CB}}^{\pm}(x) = P_{\pm} \mathcal{O}_{\mathrm{CB}}(x) \text{ with } P_{\pm} = \frac{1}{2}(\mathbb{1} \pm \gamma_0)$$

Results III: Chimera baryon

Real & imaginary part of 2-point correlation functions of the Chimera baryon

Results IV: Masses of mesons & Chimera baryon

$$\beta = 6.5, \ a m_0^{as} = -1.01, \ a m_0^f = -0.71, \ T \times L^3 = 48 \times 24^3$$

We considered spin-0 & 1 flavored mesons: pseudoscalar(PS), vector(V), tensor(T), axial-vector(AV), axial-tensor(AT) & scalar(S).

Summary & outlook

- We have developed numerical techniques to simulate Sp(2N) lattice gauge theories coupled to fermions in the multiple representations.
- The first lattice studies of the VU model with the exact flavor content required for CH & top-partial comp.: Sp(4) with $N_f=2F \& n_f=3AS$ Dirac fermions.
 - Weak coupling region: $\beta \lesssim 6.4$
 - FV effects are under control: $7 \lesssim m_{\rm PS}^f L \& 11 \lesssim m_{\rm PS}^{as} L$
 - Chimera baryon (top partner): parity projection, smearing & variational method

To do list

- Generate ensembles at various values of β , m_0^f , m_0^{as} and calculate the lowlying spectra of composite states: mass dependence & lattice artifacts
- Compute the (low-lying) Dirac eigenvalues

Chirally broken or conformal?

How light is the chimera baryon?

Thank you for your attention!

From our previous studies of $N_f=2$ F Sp(4) & $n_f=3$ AS Sp(4) we learned that 1st order bulk phase transitions exist for $\beta \leq 6.7$ & $\beta \leq 6.5$, respectively.

