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bounds on the singlet pNGBs in Section IV. We o↵er our conclusions in Section V.

II. UNDERLYING MODELS FOR A COMPOSITE HIGGS WITH TOP PARTIAL

COMPOSITENESS

Coset HC  � �q�/q Baryon Name Lattice

SU(5)

SO(5)
⇥ SU(6)

SO(6)

SO(7)
5⇥ F 6⇥ Sp

5/6
 ��

M1

SO(9) 5/12 M2

SO(7)
5⇥ Sp 6⇥ F

5/6
  �

M3

SO(9) 5/3 M4

SU(5)

SO(5)
⇥ SU(6)

Sp(6)
Sp(4) 5⇥A2 6⇥ F 5/3  �� M5

p

SU(5)

SO(5)
⇥ SU(3)2

SU(3)

SU(4) 5⇥A2 3⇥ (F,F) 5/3
 ��

M6
p

SO(10) 5⇥ F 3⇥ (Sp,Sp) 5/12 M7

SU(4)

Sp(4)
⇥ SU(6)

SO(6)

Sp(4) 4⇥ F 6⇥A2 1/3
  �

M8
p

SO(11) 4⇥ Sp 6⇥ F 8/3 M9

SU(4)2

SU(4)
⇥ SU(6)

SO(6)

SO(10) 4⇥ (Sp,Sp) 6⇥ F 8/3
  �

M10

SU(4) 4⇥ (F,F) 6⇥A2 2/3 M11
p

SU(4)2

SU(4)
⇥ SU(3)2

SU(3)
SU(5) 4⇥ (F,F) 3⇥ (A2,A2) 4/9   � M12

TABLE I. Model details. The first column shows the EW and QCD colour cosets, respectively, followed

by the representations under the confining hypercolour (HC) gauge group of the EW sector fermions

 and the QCD coloured ones �. The �q�/q column indicates the ratio of charges of the fermions

under the non-anomalous U(1) combination, while “Baryon” indicate the typical top partner structure.

The column “Name” contains the model nomenclature from Ref. [27], while the last column marks

the models that are currently being considered on the lattice. Note that Sp indicates the spinorial

representation of SO(N), while F and A2 stand for the fundamental and two-index anti-symmetric

representations.

In this work we are interested in the underlying models for composite Higgs with top partial

compositeness defined in Ref. [24]. These models characterise the underlying dynamics below

the condensation scale ⇤ ⇡ 4⇡f , f being the decay constant of the pNGBs. As such, the need to

be outside of the conformal window: this leaves only 12 models [36], listed in Table I. They are

defined in terms of a confining gauge interaction, that we call hypercolour (HC), and two species

of fermions in two di↵erent irreducible representations of the HC. The two species of fermions

play di↵erent roles: the EW charged  generate the Higgs and the EW symmetry breaking
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Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
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# of pNGBs = 5

4 of 5 PNGBs: Higgs doublets

Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

symmetry [17–19]. One extends the symmetry from SU(4) to SU(4)A ⇥ SU(4)B, with
SU(4)A weakly gauged, with coupling g⇢. Then one enlarges the field content to include
two non-linear sigma-model fields S and ⌃. The non-linear sigma-model S transforms as
the bifundamental of SU(4)B ⇥SU(4)A, while the field ⌃ transforms on the antisymmetric
of SU(4)A:

S ! UB S U †
A
, ⌃ ! UA⌃U

T

A . (2.14)

In a composite Higgs model, the SM gauge group SU(2)L⇥U(1)Y is a subgroup of SU(4)B.
The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = @µS � i g⇢SAµ , (2.15)
Dµ⌃ = @µ⌃ + i g⇢

�
Aµ⌃ + ⌃AT

µ

�
, (2.16)

and then L0 is replaced by all possible 2-derivative invariant operators made by S, ⌃, DS,
D⌃, together with the kinetic term for the gauge bosons. Both S and ⌃ are non-vanishing
in the vacuum, inducing the symmetry breaking pattern SU(4)A ⇥ SU(4)B ! Sp(4), and
all vectors are massive. h⌃i splits the mass of the 5 a1 and the 10 ⇢ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They
are linear combinations of the fluctuations of S and ⌃. The mass term for the pions is

Lm = �
v3

4
Tr

n
M S ⌃ST

o
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated
way, that will be discussed elsewhere [30].

In the absence of the antisymmetric condensate (for h⌃i = 0), ⇢ and a1 mesons would
be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking
SU(4) ! Sp(4). In the main body of the paper we use the mass splitting between ⇢

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at
high temperatures. The generalization to the case in which ⌃ is replaced by H̃ does not
require any new ingredients. In particular the restoration of the axial U(1)A and of the
chiral SU(4) can, at least in principle, be treated independently. We summarize in Table 2
the properties of the states discussed in the body of the paper. One of the purposes of this
paper is to make the first steps towards a quantitative assessment of the relation between
the two phenomena at high temperature, in the specific theory of interest here.
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SM EW

1 Sp(4) gauge theory with two-flavor Dirac fundamental fermions

1.1 Sp(4) Yang-Mills Theory

We first consider the pure Sp(4) gauge theory.

Our choice of the generators of SU(4) gauge group is as follows.

1.2 Algorithms

1.2.1 Gauge force and exponentiation
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e (2)
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(L3
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|�|

2
� �2

�2
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4g2
tr(Fµ⌫

Fµ⌫) + |D�|
2 + V (|�|) (6)

1
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Figure 1: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at
� = 6.4, 6.5 and 6.6 from left to right, respectively. The red and blue symbols denote the
expectation values of the plaquette hP i obtained from random (hot) and unit (cold) initial
configurations on a 84 lattice.

 ̂a↵b
⌘

⇣
 
a
�
↵
 
b
⌘

(2.2)

Uµ(x) 2 Sp(4) & j = 1, 2, 3 (2.3)

� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.4)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.5)

p
[dim(R)]

mV

fPS
⇠ constant (2.6)

h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.7)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
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Sp(4) on the lattice

Lattice formulation with the standard Wilson gauge & fermion actions

3 Lattice setup

3.1 Lattice action

gauge sector: plaquette action

fermion sector: Wilson-Dirac formulation for fermions in two distinct representations

lattice parameters: lattice coupling �, bare fermion masses m
f
0 m
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Uµ(x) = U
F
µ (x) 2 Sp(4) (3.2)

In order to construct the Dirac operator D
AS

for fermion fields  ab
in the 2-index

antisymmetric representation, we follow the prescription in [12]. For Sp(2N), we define

an orthonormal basis e
(ab)
AS (with the multi-index (ab) running over ordered pairs with 1 

a < b  2N) for the appropriate vector space of 2N ⇥ 2N antisymmetric matrices. The

N(2N � 1)� 1 such matrices have the following non-vanishing entries. For b = N + a and

2  a  N

(e(ab)AS )c,N+c ⌘ �(e(ab)AS )N+c,c ⌘

8
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:
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p
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and for b 6= N + a

(e(ab)AS )cd ⌘
1
p
2
(�ac�bd � �bc�ad) . (3.4)

The main difference compared to the case of SU(N) is that the base eAS is ⌦-traceless,

satisfying ⌦dc
⇣
e
(ab)
AS

⌘

cd
= 0. In the Sp(4) case, one can verify that the resulting 5 non-

vanishing matrices satisfy the orthonormalisation condition Tr e(ab)AS e
(cd)
AS = ��

(ab)(cd)
, while

the matrix e
(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

U
AS
µ (x) descends from the fundamental link variables Uµ(x), as

�
U

AS
µ

�
(ab)(cd)

(x) ⌘ Tr
h
(e(ab)AS )†Uµ(x)e

(cd)
AS U

T
µ (x)

i
, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).
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2.2 Low energy effective field theory

global symmetry breaking according to SU(4)⇥ SU(6)/Sp(4)⇥ SO(6)
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3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form
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�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11
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2.2 Low energy effective field theory
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Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).
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eAS is antisymmetric and ⌦-traceless,
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3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons
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e.g. Del Debbio, Patella & Pica (2008) for SU(N)



Simulation details

HiRep code with appropriate modifications:
Del Debbio, Patella & Pica (2008)

E. Bennett el al (2017)resymplectisation

reduced matrix E. Bennett el al (2018)

antisymmetric representation E. Bennett el al (2019)

multiple representations (fund. + two-index rep.)

Using HMC (RHMC) algorithms, we simulate lattice Sp(4) theory coupled to 
both  Nf=2 F & nf=3 AS Dirac fermions. 

For the exploratory studies of hadron spectrum we have used point sources 
while leaving more sophisticated measurements in our future work. 

This work



Results I: bare parameter space

Figure 1: A schematic phase diagram of the bare parameter space of Sp(4) gauge theories

coupled to Nf = 2 fundamental (F) and nf = 3 two-index antisymmetric (AS) Dirac

fermions. The three relevant bare parameters are the lattice gauge coupling, �, and the

bare fermions masses, m
f
0 and m

as
0 , for the fundamental and antisymmetric representations.

The black surface corresponds to the boundary on which a first-order bulk phase transition

occurs, while the red, blue and green denote the first-order lines for three values of �, one

for the deep strong coupling regime and the others for the intemeriate regime, respectively.

Using this result, we can rewrite Eq. 4.5 as
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Comparing Eqs. 4.16 and 4.22, we conclude that the Chimera propagators built from O1

and O2 are identical to each other.

5 Numerical results

5.1 Phase struction of the bare parameter space

In the preliminary analysis we first confirmed the existance of the first-order bulk phase

transition in the space of bare parameters, the lattice coupling � and the masses m
as
0 and m

f
0

of fermions in the two-index antisymmetric (AS) and the fundamental (F) representations,

by monitoring the plaquette values. In Fig. 1, we show the schematic diagram of the bulk

structure of Sp(4) gauge theory coupled to Nf = 2 fundamental and nf = 3 antisymmetric

fermions. The black surface corresponds to which first-order bulk phase transition occurs.

We recall that the boundaries between weak and strong coupling regimes for F and AS are

around � = 6.7 [1] and 6.5 [2], respectively. (In a conservative manner, we have restricted

the weak coupling regimes by � � 6.8 and � 6.6, respectively.) By including all the
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1st order bulk phase transitions exist for              &              , respectively.

Uµ(x) = U
F
µ (x) 2 Sp(4) (3.2)

In order to construct the Dirac operator D
AS

for fermion fields  ab
in the 2-index

antisymmetric representation, we follow the prescription in [? ]. For Sp(2N), we define

an orthonormal basis e
(ab)
AS (with the multi-index (ab) running over ordered pairs with 1 

a < b  2N) for the appropriate vector space of 2N ⇥ 2N antisymmetric matrices. The

N(2N � 1)� 1 such matrices have the following non-vanishing entries. For b = N + a and

2  a  N

(e(ab)AS )c,N+c ⌘ �(e(ab)AS )N+c,c ⌘

8
<

:

1p
2 a (a�1)

, for c < a,

�(a�1)
p

2 a (a�1)
, for c = a,

(3.3)

and for b 6= N + a

(e(ab)AS )cd ⌘
1
p
2
(�ac�bd � �bc�ad) . (3.4)

The main difference compared to the case of SU(N) is that the base eAS is ⌦-traceless,

satisfying ⌦dc
⇣
e
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⌘

cd
= 0. In the Sp(4) case, one can verify that the resulting 5 non-

vanishing matrices satisfy the orthonormalisation condition Tr e(ab)AS e
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AS = ��
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, while

the matrix e
(13)
AS vanishes identically. The explicit form of the antisymmetric link variables
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by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).
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Finally, the Dirac operator for the 2-index antisymmetric representation D
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is obtained
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4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11
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To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the 2-point correlator for mesons, it might

be sufficient to have a part of the operator in Eq. 4.2, where we choose the second term of
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Figure 1: A schematic phase diagram of the bare parameter space of Sp(4) gauge theories

coupled to Nf = 2 fundamental (F) and nf = 3 two-index antisymmetric (AS) Dirac

fermions. The three relevant bare parameters are the lattice gauge coupling, �, and the

bare fermions masses, m
f
0 and m

as
0 , for the fundamental and antisymmetric representations.

The black surface corresponds to the boundary on which a first-order bulk phase transition

occurs, while the red, blue and green denote the first-order lines for three values of �, one

for the deep strong coupling regime and the others for the intemeriate regime, respectively.
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Comparing Eqs. 4.16 and 4.22, we conclude that the Chimera propagators built from O1

and O2 are identical to each other.
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transition in the space of bare parameters, the lattice coupling � and the masses m
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0 and m

f
0

of fermions in the two-index antisymmetric (AS) and the fundamental (F) representations,

by monitoring the plaquette values. In Fig. 1, we show the schematic diagram of the bulk

structure of Sp(4) gauge theory coupled to Nf = 2 fundamental and nf = 3 antisymmetric

fermions. The black surface corresponds to which first-order bulk phase transition occurs.

We recall that the boundaries between weak and strong coupling regimes for F and AS are

around � = 6.7 [1] and 6.5 [2], respectively. (In a conservative manner, we have restricted

the weak coupling regimes by � � 6.8 and � 6.6, respectively.) By including all the

– 8 –

Nf=2 fund. Sp(4)

nf=3 antisym. Sp(4)

From our previous studies of Nf=2 F Sp(4) & nf=3 AS Sp(4) we learned that 
1st order bulk phase transitions exist for              &              , respectively.

Uµ(x) = U
F
µ (x) 2 Sp(4) (3.2)

In order to construct the Dirac operator D
AS

for fermion fields  ab
in the 2-index

antisymmetric representation, we follow the prescription in [? ]. For Sp(2N), we define

an orthonormal basis e
(ab)
AS (with the multi-index (ab) running over ordered pairs with 1 

a < b  2N) for the appropriate vector space of 2N ⇥ 2N antisymmetric matrices. The

N(2N � 1)� 1 such matrices have the following non-vanishing entries. For b = N + a and

2  a  N

(e(ab)AS )c,N+c ⌘ �(e(ab)AS )N+c,c ⌘

8
<

:

1p
2 a (a�1)

, for c < a,

�(a�1)
p

2 a (a�1)
, for c = a,

(3.3)

and for b 6= N + a

(e(ab)AS )cd ⌘
1
p
2
(�ac�bd � �bc�ad) . (3.4)

The main difference compared to the case of SU(N) is that the base eAS is ⌦-traceless,

satisfying ⌦dc
⇣
e
(ab)
AS

⌘

cd
= 0. In the Sp(4) case, one can verify that the resulting 5 non-

vanishing matrices satisfy the orthonormalisation condition Tr e(ab)AS e
(cd)
AS = ��

(ab)(cd)
, while

the matrix e
(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

U
AS
µ (x) descends from the fundamental link variables Uµ(x), as

�
U

AS
µ

�
(ab)(cd)

(x) ⌘ Tr
h
(e(ab)AS )†Uµ(x)e

(cd)
AS U

T
µ (x)

i
, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 5 –

Uµ(x) = U
F
µ (x) 2 Sp(4) (3.2)

In order to construct the Dirac operator D
AS

for fermion fields  ab
in the 2-index

antisymmetric representation, we follow the prescription in [? ]. For Sp(2N), we define

an orthonormal basis e
(ab)
AS (with the multi-index (ab) running over ordered pairs with 1 

a < b  2N) for the appropriate vector space of 2N ⇥ 2N antisymmetric matrices. The

N(2N � 1)� 1 such matrices have the following non-vanishing entries. For b = N + a and

2  a  N

(e(ab)AS )c,N+c ⌘ �(e(ab)AS )N+c,c ⌘

8
<

:

1p
2 a (a�1)

, for c < a,

�(a�1)
p

2 a (a�1)
, for c = a,

(3.3)

and for b 6= N + a

(e(ab)AS )cd ⌘
1
p
2
(�ac�bd � �bc�ad) . (3.4)

The main difference compared to the case of SU(N) is that the base eAS is ⌦-traceless,

satisfying ⌦dc
⇣
e
(ab)
AS

⌘

cd
= 0. In the Sp(4) case, one can verify that the resulting 5 non-

vanishing matrices satisfy the orthonormalisation condition Tr e(ab)AS e
(cd)
AS = ��

(ab)(cd)
, while

the matrix e
(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

U
AS
µ (x) descends from the fundamental link variables Uµ(x), as

�
U

AS
µ

�
(ab)(cd)

(x) ⌘ Tr
h
(e(ab)AS )†Uµ(x)e

(cd)
AS U

T
µ (x)

i
, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 5 –

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)

To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the 2-point correlator for mesons, it might

be sufficient to have a part of the operator in Eq. 4.2, where we choose the second term of

OCB,4,

O
k
CB,↵ = �iQ2 a

C Q
1 b⌦bc 

k ca
↵

= iQ
2 d T (C�

5)⌦daQ
1b⌦bc 

k ca
↵

= �i(C�
5)��⌦ac⌦bdQ

2a
� Q

1b
�  

k cd
↵ , (4.3)

– 6 –

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)

To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the 2-point correlator for mesons, it might

be sufficient to have a part of the operator in Eq. 4.2, where we choose the second term of

OCB,4,

O
k
CB,↵ = �iQ2 a

C Q
1 b⌦bc 

k ca
↵

= iQ
2 d T (C�

5)⌦daQ
1b⌦bc 

k ca
↵

= �i(C�
5)��⌦ac⌦bdQ

2a
� Q

1b
�  

k cd
↵ , (4.3)

– 6 –

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)

To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the 2-point correlator for mesons, it might

– 6 –

E. Bennett el al (2018) JWL el al (2019)

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

am
f
0 = �0.6 (3.12)

� = 6.5, am
as
0 = �1.01, am

f
0 = �0.71, T ⇥ L

3 = 48⇥ 243 (3.13)

7 . m
f
PS L (3.14)

11 . m
as
PS L (3.15)

P± =
1

2
(1 + �0) (3.16)

O
±
CB(x) = P±OCB(x) (3.17)

eAS is antisymmetric and ⌦-traceless,

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 6 –



Results I: bare parameter space

-1 0 1 2 3 4

-1

0

1

2

3

4

m0
f a

m
0as
a

A

B

C D E
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gauge theories coupled to Nf = 2 fundamental (F) and nf = 3 two-index antisymmetric

(AS) fermions. The blue solid line denotes the the boundary on which a first-order bulk

phase transition occurs, which is the same blue line in Fig. 1. The light blue line correponds

the crossover region.

dynamical fermions, we find that the weak coupling regime extends to the smaller values of

� in a wide region of the parameter space, e.g. negative numbers for both the bare masses,

m
as
0 < 0 and m

f
0 < 0. The three colored lines roughly represent the first-order lines for

� = 6.3 (red), 6.4 (blue) and 6.5 (green). We note that the first-order surface is asymmetric

with respect to m
as
0 and m

f
0 hinted by the different values for the phase boundaries in the

cases of F and AS representations.

We numerically explored the phase space by computing the average plaquette values.

Let’s us focus on the case of � = 6.4 which corresponds to the blue line in Fig. 1.
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A Notations and useful relations

Before we write the explicit expressions for the Chimera baryon, let us summarize some

useful relations taken from our quenched paper Ref. [11].
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The different signs of finite volume effects can be understood from the 
low-energy effective field theory.

Figure 7: Vector meson mass in units of pseudoscalar decay constant in Sp(4) theory with
fundamental matter. The sharp and opaque colors are for the Nf = 3 dynamical and the
Nf = 0 quenched fermions, respectively. In the legend, QFund and DFund denote for the
results with quenched and dynamical fundamental fermions, respectively.
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A Finite volume correction in the chiral perturbation theory

The finite volume correction to the pseudoscalar mass can be understood in the framework
of chiral perturbation theory (�PT). We start with the infinite volume version of continuum
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where M is the leading order (LO) pseudoscalar mass, i.e. M
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A, a consequence of one-loop calculation, is given as
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with µ the renormalization scalar and F the pseudoscalar decay constant in the chiral limit.
As the finite volume correction arises from the loop computation in which the integral is
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Here AFV denotes the finite volume correction whose asymptotic form is [5]
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As discussed in details in Ref. [3], the coefficients are different depending on the sym-
metry breaking pattern, while the rest of the functional form in Eq. (A.3) remains same.
In the case of SU(2Nf ) ! SO(2Nf ) relevant to our work, the coefficient aM is given as

aM =
1

2
�

1

2Nf
. (A.5)

In the other two cases, the coefficients are

aM = �
1

Nf
, for SU(Nf )⇥ SU(Nf ) ! SU(Nf ),

aM = �
1

2
�

1

Nf
, for SU(2Nf ) ! Sp(2Nf ). (A.6)

By comparing those coefficients, we immediately notice that Eq. (A.5) has different sign
with Eq. (A.6) if Nf is greater than or equal to unity. As we already saw in Ref. [4], the
finite volume correction enhances the masses of pseudoscalar and vetor mesons in the case
of Sp(4) with fundamental flavors. Therefore, the results shown in Fig. 4 are consistent
with the �PT prediction in which now the finite volume correction lower the masses.
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By comparing those coefficients, we immediately notice that Eq. (A.5) has different sign
with Eq. (A.6) if Nf is greater than or equal to unity. As we already saw in Ref. [4], the
finite volume correction enhances the masses of pseudoscalar and vetor mesons in the case
of Sp(4) with fundamental flavors. Therefore, the results shown in Fig. 4 are consistent
with the �PT prediction in which now the finite volume correction lower the masses.
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Chimera baryon as top partner

Recall the global symmetry and its spontaneous breaking
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Appendix B: A note about massive vectors

A massive vector of mass m in D = 4 space-time dimensions can be described by two equivalent quantum theories,
with di↵erent field content and Lagrangian densities (see for instance the detailed discussions in Refs. [113–116] and
references therein).

• A vector field Aµ couples to a scalar field ⇡, with Lagrangian density

L0 = �1

4
Fµ⌫F

µ⌫ � 1

2

⇣
@µ⇡ + mAµ

⌘⇣
@µ⇡ + mAµ

⌘
, (B1)

where Fµ⌫ = @µA⌫ � @⌫Aµ. L0 is invariant under the gauge transformations

⇡ ! ⇡ + m↵ , Aµ ! Aµ � @µ↵ , (B2)

with ↵ = ↵(x). The gauge choice ↵ = �⇡/m removes ⇡ from the Lagrangian density, which then depends only
on a massive vector field.

• A 2-index antisymmetric form Bµ⌫ is coupled to a vector Aµ (not to be confused with Aµ), and the Lagrangian
density is

L1 = � 1

12
Gµ⌫⇢G

µ⌫⇢ � 1

4
Hµ⌫Hµ⌫ , (B3)

where Fµ⌫ ⌘ @µA⌫ � @⌫Aµ, Hµ⌫ ⌘ Fµ⌫ + m Bµ⌫ and Gµ⌫⇢ ⌘ @µB⌫⇢ + @⇢Bµ⌫ + @⌫B⇢µ. The Lagrangian L1 is
invariant under the gauge transformation

Aµ ! Aµ + m↵µ , Bµ⌫ ! Bµ⌫ � @µ↵⌫ + @⌫↵µ , (B4)

with the vector ↵µ = ↵µ(x). The gauge choice ↵µ = �Aµ/m removes Aµ from the Lagrangian density, which
then depends only on a massive 2-form field.

The Lagrangian L1 can also be rewritten, by defining Kµ⌫ ⌘ 1

2m
✏µ⌫⇢�H⇢�, in the form

L1 =
1

2
@↵Kµ↵@�Kµ

�
+

m2

4
Kµ⌫Kµ⌫ . (B5)

Gauge invariance is not manifest in this form. The Lagrangians L0 and L1 are equivalent at the level of the path
integrals they define [113–116]. Hence, the use of anti-symmetric massive 2-index tensors provides an alternative,
equivalent descriptions of massive vectors.

In physical terms, there is no di↵erence between these two (or rather, three) formulations. Important di↵erences
are introduced by the coupling to matter fields and sources. For example, one can couple fermions to Aµ via the new
term

LA = igQ̄�µAµPLQ , (B6)

with Q a Dirac fermion and g the coupling. For the antisymmetric tensor, one may write

LB = gQ̄�µ⌫Bµ⌫PLQ . (B7)

While LA couples the spin-1 field to the LH component only of Q, in LB the LH and RH projections are coupled to
one another, so that while L0 and L1 in isolation define the same theory, the addition of LA or LB leaves di↵erent
global symmetries and di↵erent coupled theories.

Appendix C: About Lie groups, algebras and SM embedding

Here we summarise some group theory notions relevant for models of composite Higgs and top quark compositeness
based on the SU(4)/Sp(4) ⌦ SU(6)/SO(6) coset [12, 43]. We do not repeat unnecessary details—in particular, our
special choice of SU(4) generators can be found elsewhere [50]—but we explicitly show the embedding of the SM
gauge group (and fields, when useful).

Then, the top partner can be sourced by the operators

where            subgroup of            ~               gauge group in SM  &
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The SU(4)/Sp(4) coset governs the Higgs sector of the Standard Model. Given the form of ⌦ in Eq. (5), the
unbroken subgroup SO(4) ⇠ SU(2)L ⇥ SU(2)R is the subset of the unbroken global Sp(4) ⇢ SU(4) that is generated
by the following elements of the associated algebra:
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The TL generators satisfy the SU(2)L algebra
h
T i

L
, T j

L

i
= i✏ijk T k

L
, and similarly

h
T i

R
, T j

R

i
= i✏ijk T k

R
, while

h
T i

L
, T j

R

i
= 0. In the vacuum aligned with ⌦ in Eq. (5), this is the natural choice of embedding of the SO(4) symme-

tries of the Higgs potential. Following the notation in Refs. [50, 62], the matrix of the 5 pNGB fields parametrising
the SU(4)/Sp(4) coset is

⇡(x) =
1

2
p

2

0

B@

⇡3(x) ⇡1(x) � i⇡2(x) 0 �i⇡4(x) + ⇡5(x)
⇡1(x) + i⇡2(x) �⇡3(x) i⇡4(x) � ⇡5(x) 0

0 �i⇡4(x) � ⇡5(x) ⇡3(x) ⇡1(x) + i⇡2(x)
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1
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The real fields ⇡1, ⇡2, ⇡4, and ⇡5 combine into the Higgs doublet, while ⇡3 is a SM singlet.
The SU(6)/SO(6) coset is relevant to top compositeness. The choice of nf = 3 Dirac fermions on the 2-index

antisymmetric representation of Sp(4) matches the number of colours in the SU(3)c gauge group of the standard
model. The natural subgroup SU(3)L ⇥ SU(3)R ⇢ SU(6) is generated by

tB
L

=
1

2

✓
�B 03

03 03

◆
, tB

R
=

1

2

✓
03 03

03 ��B⇤

◆
, (C4)

with �B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr �A�B = 2�AB (so that
Tr tA

L
tB
L

= 1

2
�AB).

By defining tB
c

⌘ (tB
L

+ tB
R

), with the choice of ! in Eq. (5), one can verify that !tB
c

+ tBT
c

! = 0, that the structure
constants

⇥
tA
c

, tB
c

⇤
= ifABCtC

c
are those of the su(3)c algebra, and that Tr tA

c
tB
c

= �AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6 ⇥ 6 matrices acting on 2-component
spinors. We hence identify tB

c
as the generators of the SU(3)c gauge symmetry of the Standard Model. An additional,

independent, unbroken generator of SU(6) is given by

X ⌘
✓

13 03

03 �13

◆
, (C5)

which also commutes with the generators of SU(3)c. The generator Y of the hypercharge U(1)Y gauge symmetry of
the Standard Model is a linear combination of X and T 3

R
(see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e↵ective
potential due to the gauging of the relevant SM subgroups of the global SU(4) ⇥ SU(6) symmetry, and discuss their
e↵ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external field method, and borrow the regulated Coleman-Weinberg potential V1 from Ref. [117],
computed by assuming that a hard momentum cut-o↵ ⇤ is applied to the 1-loop integrals. With our conventions we
write

V1 =
⇤2

32⇡2
STr M2 +

1

64⇡2
STr


(M2)2 log

M2

⇤2
+ ci

�
, (C6)
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           subgroup of            ~                gauge group in SM 

Together, these two sets OPS,i and O
0
PS,i, with i = 1, 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in a SO(4) symmetric two-higgs doublet

model. For completeness, a generic, 2 ⇥ 2 complex matrix transforming as a (2, 2) of

SU(2)L ⇥ SU(2)R can be written as as

� =
1
p
2

⇣
hr12 + i⇡

a
r ⌧

a
⌘
+

i
p
2

⇣
hi12 + i⇡

a
i ⌧

a
⌘
, (2.10)

with a = 1, 2, 3, ⌧a the Pauli matrices, and the eight fields hr,i and ⇡
a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a

way that one can construct bilinear couplings with the standard-model quarks without vio-

lating any of the symmetries. For what concerns SU(2)L, the aforementioned assignments

in Eqs. (2.6) and (2.9) would suffice to give the quantum numbers of the left-handed and

right-handed quarks, in terms of the 4 of SO(4). In order to add SU(3) colour, and to form

a fermion bound state, we use the anti-symmetric  
k ab

. We recall that SU(6) admits a

natural SU(3)L ⇥SU(3)R subgroup, and that both the mass term and the strong-coupling

vacuum break SU(3)L ⇥ SU(3)R ! SU(3)V . We identify this SU(3)V with the SU(3)c of

QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this

will combine with the T3 generator of SU(2)R ⇢ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply

replace ⌦ab in Eq. (2.5) with ⌦ab ! ⌦acPL,R k cd⌦db. Hence, the operators O
L,R
CB are the

following:
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The SU(4)/Sp(4) coset governs the Higgs sector of the Standard Model. Given the form of ⌦ in Eq. (5), the
unbroken subgroup SO(4) ⇠ SU(2)L ⇥ SU(2)R is the subset of the unbroken global Sp(4) ⇢ SU(4) that is generated
by the following elements of the associated algebra:
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The TL generators satisfy the SU(2)L algebra
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, T j

R

i
= 0. In the vacuum aligned with ⌦ in Eq. (5), this is the natural choice of embedding of the SO(4) symme-

tries of the Higgs potential. Following the notation in Refs. [50, 62], the matrix of the 5 pNGB fields parametrising
the SU(4)/Sp(4) coset is

⇡(x) =
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The real fields ⇡1, ⇡2, ⇡4, and ⇡5 combine into the Higgs doublet, while ⇡3 is a SM singlet.
The SU(6)/SO(6) coset is relevant to top compositeness. The choice of nf = 3 Dirac fermions on the 2-index

antisymmetric representation of Sp(4) matches the number of colours in the SU(3)c gauge group of the standard
model. The natural subgroup SU(3)L ⇥ SU(3)R ⇢ SU(6) is generated by
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with �B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr �A�B = 2�AB (so that
Tr tA

L
tB
L

= 1

2
�AB).

By defining tB
c

⌘ (tB
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+ tB
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), with the choice of ! in Eq. (5), one can verify that !tB
c

+ tBT
c

! = 0, that the structure
constants

⇥
tA
c

, tB
c

⇤
= ifABCtC

c
are those of the su(3)c algebra, and that Tr tA

c
tB
c

= �AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6 ⇥ 6 matrices acting on 2-component
spinors. We hence identify tB

c
as the generators of the SU(3)c gauge symmetry of the Standard Model. An additional,

independent, unbroken generator of SU(6) is given by

X ⌘
✓

13 03

03 �13
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, (C5)

which also commutes with the generators of SU(3)c. The generator Y of the hypercharge U(1)Y gauge symmetry of
the Standard Model is a linear combination of X and T 3

R
(see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e↵ective
potential due to the gauging of the relevant SM subgroups of the global SU(4) ⇥ SU(6) symmetry, and discuss their
e↵ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external field method, and borrow the regulated Coleman-Weinberg potential V1 from Ref. [117],
computed by assuming that a hard momentum cut-o↵ ⇤ is applied to the 1-loop integrals. With our conventions we
write

V1 =
⇤2

32⇡2
STr M2 +

1

64⇡2
STr


(M2)2 log

M2

⇤2
+ ci

�
, (C6)
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Together, these two sets OPS,i and O
0
PS,i, with i = 1, 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in a SO(4) symmetric two-higgs doublet

model. For completeness, a generic, 2 ⇥ 2 complex matrix transforming as a (2, 2) of

SU(2)L ⇥ SU(2)R can be written as as

� =
1
p
2

⇣
hr12 + i⇡

a
r ⌧

a
⌘
+

i
p
2

⇣
hi12 + i⇡

a
i ⌧

a
⌘
, (2.10)

with a = 1, 2, 3, ⌧a the Pauli matrices, and the eight fields hr,i and ⇡
a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a

way that one can construct bilinear couplings with the standard-model quarks without vio-

lating any of the symmetries. For what concerns SU(2)L, the aforementioned assignments

in Eqs. (2.6) and (2.9) would suffice to give the quantum numbers of the left-handed and

right-handed quarks, in terms of the 4 of SO(4). In order to add SU(3) colour, and to form

a fermion bound state, we use the anti-symmetric  
k ab

. We recall that SU(6) admits a

natural SU(3)L ⇥SU(3)R subgroup, and that both the mass term and the strong-coupling

vacuum break SU(3)L ⇥ SU(3)R ! SU(3)V . We identify this SU(3)V with the SU(3)c of

QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this

will combine with the T3 generator of SU(2)R ⇢ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply

replace ⌦ab in Eq. (2.5) with ⌦ab ! ⌦acPL,R k cd⌦db. Hence, the operators O
L,R
CB are the

following:

O
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5
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.

Both the left-handed and right-handed components transform as 3 of SU(3)c, and 4 of

SO(4) = SU(2)L ⇥ SU(2)R. We write explicitly also the operators obtained by replacing

14 ! i�
5

inside the bilinear in Q:

O
0L,R
CB,1 = i
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Analogous expressions can be derived for the two SO(4) singlets and the two Sp(4)

singlets, obtained from adding the left-handed and right-handed projections of the anti-

symmetric  k ab
to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top

partners are hence sourced by the O
L,R
CB operators, while the O

0L,R
CB operators source heavier

replicas, which one expects to become degenerate with those of O
L,R
CB in the limit in which

U(1)A is restored.
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Chimera baryon as top partner

Recall the global symmetry and its spontaneous breaking
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Appendix B: A note about massive vectors

A massive vector of mass m in D = 4 space-time dimensions can be described by two equivalent quantum theories,
with di↵erent field content and Lagrangian densities (see for instance the detailed discussions in Refs. [113–116] and
references therein).

• A vector field Aµ couples to a scalar field ⇡, with Lagrangian density

L0 = �1

4
Fµ⌫F

µ⌫ � 1

2

⇣
@µ⇡ + mAµ

⌘⇣
@µ⇡ + mAµ

⌘
, (B1)

where Fµ⌫ = @µA⌫ � @⌫Aµ. L0 is invariant under the gauge transformations

⇡ ! ⇡ + m↵ , Aµ ! Aµ � @µ↵ , (B2)

with ↵ = ↵(x). The gauge choice ↵ = �⇡/m removes ⇡ from the Lagrangian density, which then depends only
on a massive vector field.

• A 2-index antisymmetric form Bµ⌫ is coupled to a vector Aµ (not to be confused with Aµ), and the Lagrangian
density is

L1 = � 1

12
Gµ⌫⇢G

µ⌫⇢ � 1

4
Hµ⌫Hµ⌫ , (B3)

where Fµ⌫ ⌘ @µA⌫ � @⌫Aµ, Hµ⌫ ⌘ Fµ⌫ + m Bµ⌫ and Gµ⌫⇢ ⌘ @µB⌫⇢ + @⇢Bµ⌫ + @⌫B⇢µ. The Lagrangian L1 is
invariant under the gauge transformation

Aµ ! Aµ + m↵µ , Bµ⌫ ! Bµ⌫ � @µ↵⌫ + @⌫↵µ , (B4)

with the vector ↵µ = ↵µ(x). The gauge choice ↵µ = �Aµ/m removes Aµ from the Lagrangian density, which
then depends only on a massive 2-form field.

The Lagrangian L1 can also be rewritten, by defining Kµ⌫ ⌘ 1

2m
✏µ⌫⇢�H⇢�, in the form

L1 =
1

2
@↵Kµ↵@�Kµ

�
+

m2

4
Kµ⌫Kµ⌫ . (B5)

Gauge invariance is not manifest in this form. The Lagrangians L0 and L1 are equivalent at the level of the path
integrals they define [113–116]. Hence, the use of anti-symmetric massive 2-index tensors provides an alternative,
equivalent descriptions of massive vectors.

In physical terms, there is no di↵erence between these two (or rather, three) formulations. Important di↵erences
are introduced by the coupling to matter fields and sources. For example, one can couple fermions to Aµ via the new
term

LA = igQ̄�µAµPLQ , (B6)

with Q a Dirac fermion and g the coupling. For the antisymmetric tensor, one may write

LB = gQ̄�µ⌫Bµ⌫PLQ . (B7)

While LA couples the spin-1 field to the LH component only of Q, in LB the LH and RH projections are coupled to
one another, so that while L0 and L1 in isolation define the same theory, the addition of LA or LB leaves di↵erent
global symmetries and di↵erent coupled theories.

Appendix C: About Lie groups, algebras and SM embedding

Here we summarise some group theory notions relevant for models of composite Higgs and top quark compositeness
based on the SU(4)/Sp(4) ⌦ SU(6)/SO(6) coset [12, 43]. We do not repeat unnecessary details—in particular, our
special choice of SU(4) generators can be found elsewhere [50]—but we explicitly show the embedding of the SM
gauge group (and fields, when useful).

We also consider the            counterparts (              , expected to be heavier)

where            subgroup of            ~               gauge group in SM  &
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The SU(4)/Sp(4) coset governs the Higgs sector of the Standard Model. Given the form of ⌦ in Eq. (5), the
unbroken subgroup SO(4) ⇠ SU(2)L ⇥ SU(2)R is the subset of the unbroken global Sp(4) ⇢ SU(4) that is generated
by the following elements of the associated algebra:
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The TL generators satisfy the SU(2)L algebra
h
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, and similarly
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L
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i
= 0. In the vacuum aligned with ⌦ in Eq. (5), this is the natural choice of embedding of the SO(4) symme-

tries of the Higgs potential. Following the notation in Refs. [50, 62], the matrix of the 5 pNGB fields parametrising
the SU(4)/Sp(4) coset is
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The real fields ⇡1, ⇡2, ⇡4, and ⇡5 combine into the Higgs doublet, while ⇡3 is a SM singlet.
The SU(6)/SO(6) coset is relevant to top compositeness. The choice of nf = 3 Dirac fermions on the 2-index

antisymmetric representation of Sp(4) matches the number of colours in the SU(3)c gauge group of the standard
model. The natural subgroup SU(3)L ⇥ SU(3)R ⇢ SU(6) is generated by
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with �B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr �A�B = 2�AB (so that
Tr tA

L
tB
L

= 1

2
�AB).

By defining tB
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⌘ (tB
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), with the choice of ! in Eq. (5), one can verify that !tB
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! = 0, that the structure
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are those of the su(3)c algebra, and that Tr tA
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= �AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6 ⇥ 6 matrices acting on 2-component
spinors. We hence identify tB

c
as the generators of the SU(3)c gauge symmetry of the Standard Model. An additional,

independent, unbroken generator of SU(6) is given by
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which also commutes with the generators of SU(3)c. The generator Y of the hypercharge U(1)Y gauge symmetry of
the Standard Model is a linear combination of X and T 3

R
(see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e↵ective
potential due to the gauging of the relevant SM subgroups of the global SU(4) ⇥ SU(6) symmetry, and discuss their
e↵ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external field method, and borrow the regulated Coleman-Weinberg potential V1 from Ref. [117],
computed by assuming that a hard momentum cut-o↵ ⇤ is applied to the 1-loop integrals. With our conventions we
write

V1 =
⇤2

32⇡2
STr M2 +

1

64⇡2
STr
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�
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Together, these two sets OPS,i and O
0
PS,i, with i = 1, 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in a SO(4) symmetric two-higgs doublet

model. For completeness, a generic, 2 ⇥ 2 complex matrix transforming as a (2, 2) of

SU(2)L ⇥ SU(2)R can be written as as

� =
1
p
2

⇣
hr12 + i⇡

a
r ⌧

a
⌘
+

i
p
2

⇣
hi12 + i⇡

a
i ⌧

a
⌘
, (2.10)

with a = 1, 2, 3, ⌧a the Pauli matrices, and the eight fields hr,i and ⇡
a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a

way that one can construct bilinear couplings with the standard-model quarks without vio-

lating any of the symmetries. For what concerns SU(2)L, the aforementioned assignments

in Eqs. (2.6) and (2.9) would suffice to give the quantum numbers of the left-handed and

right-handed quarks, in terms of the 4 of SO(4). In order to add SU(3) colour, and to form

a fermion bound state, we use the anti-symmetric  
k ab

. We recall that SU(6) admits a

natural SU(3)L ⇥SU(3)R subgroup, and that both the mass term and the strong-coupling

vacuum break SU(3)L ⇥ SU(3)R ! SU(3)V . We identify this SU(3)V with the SU(3)c of

QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this

will combine with the T3 generator of SU(2)R ⇢ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply

replace ⌦ab in Eq. (2.5) with ⌦ab ! ⌦acPL,R k cd⌦db. Hence, the operators O
L,R
CB are the

following:

O
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1 b
⌘
⌦bcPL,R 

k ca
,

O
L,R
CB,2 =

⇣
�iQ1 a�

5
Q

2 b + iQ2 a�
5
Q

1 b
⌘
⌦bcPL,R 

k ca
, (2.11)
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.

Both the left-handed and right-handed components transform as 3 of SU(3)c, and 4 of

SO(4) = SU(2)L ⇥ SU(2)R. We write explicitly also the operators obtained by replacing

14 ! i�
5

inside the bilinear in Q:

O
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.

Analogous expressions can be derived for the two SO(4) singlets and the two Sp(4)

singlets, obtained from adding the left-handed and right-handed projections of the anti-

symmetric  k ab
to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top

partners are hence sourced by the O
L,R
CB operators, while the O

0L,R
CB operators source heavier

replicas, which one expects to become degenerate with those of O
L,R
CB in the limit in which

U(1)A is restored.
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antisymmetric representation of Sp(4) matches the number of colours in the SU(3)c gauge group of the standard
model. The natural subgroup SU(3)L ⇥ SU(3)R ⇢ SU(6) is generated by
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with �B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr �A�B = 2�AB (so that
Tr tA
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= 1
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�AB).

By defining tB
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), with the choice of ! in Eq. (5), one can verify that !tB
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! = 0, that the structure
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c
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= ifABCtC

c
are those of the su(3)c algebra, and that Tr tA

c
tB
c

= �AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6 ⇥ 6 matrices acting on 2-component
spinors. We hence identify tB

c
as the generators of the SU(3)c gauge symmetry of the Standard Model. An additional,

independent, unbroken generator of SU(6) is given by
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which also commutes with the generators of SU(3)c. The generator Y of the hypercharge U(1)Y gauge symmetry of
the Standard Model is a linear combination of X and T 3

R
(see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e↵ective
potential due to the gauging of the relevant SM subgroups of the global SU(4) ⇥ SU(6) symmetry, and discuss their
e↵ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external field method, and borrow the regulated Coleman-Weinberg potential V1 from Ref. [117],
computed by assuming that a hard momentum cut-o↵ ⇤ is applied to the 1-loop integrals. With our conventions we
write

V1 =
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which transform 3 of               and 4 of            .

Together, these two sets OPS,i and O
0
PS,i, with i = 1, 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in a SO(4) symmetric two-higgs doublet

model. For completeness, a generic, 2 ⇥ 2 complex matrix transforming as a (2, 2) of

SU(2)L ⇥ SU(2)R can be written as as

� =
1
p
2

⇣
hr12 + i⇡

a
r ⌧

a
⌘
+

i
p
2

⇣
hi12 + i⇡

a
i ⌧

a
⌘
, (2.10)

with a = 1, 2, 3, ⌧a the Pauli matrices, and the eight fields hr,i and ⇡
a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a

way that one can construct bilinear couplings with the standard-model quarks without vio-

lating any of the symmetries. For what concerns SU(2)L, the aforementioned assignments

in Eqs. (2.6) and (2.9) would suffice to give the quantum numbers of the left-handed and

right-handed quarks, in terms of the 4 of SO(4). In order to add SU(3) colour, and to form

a fermion bound state, we use the anti-symmetric  
k ab

. We recall that SU(6) admits a

natural SU(3)L ⇥SU(3)R subgroup, and that both the mass term and the strong-coupling

vacuum break SU(3)L ⇥ SU(3)R ! SU(3)V . We identify this SU(3)V with the SU(3)c of

QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this

will combine with the T3 generator of SU(2)R ⇢ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply

replace ⌦ab in Eq. (2.5) with ⌦ab ! ⌦acPL,R k cd⌦db. Hence, the operators O
L,R
CB are the

following:

O
L,R
CB,1 =

⇣
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5
Q
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C Q
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⌘
⌦bcPL,R 

k ca
.

Both the left-handed and right-handed components transform as 3 of SU(3)c, and 4 of

SO(4) = SU(2)L ⇥ SU(2)R. We write explicitly also the operators obtained by replacing

14 ! i�
5

inside the bilinear in Q:

O
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.

Analogous expressions can be derived for the two SO(4) singlets and the two Sp(4)

singlets, obtained from adding the left-handed and right-handed projections of the anti-

symmetric  k ab
to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top

partners are hence sourced by the O
L,R
CB operators, while the O

0L,R
CB operators source heavier

replicas, which one expects to become degenerate with those of O
L,R
CB in the limit in which

U(1)A is restored.
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See Talk by H. Hsiao

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

� . 6.4 (3.8)

�
c
⇠ 6.7 (3.9)

�
c
⇠ 6.5 (3.10)

� = 6.4 (3.11)

� ⇠ 6.4 (3.12)

am
f
0 = �0.6 (3.13)

� = 6.5, am
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0 = �1.01, am

f
0 = �0.71, T ⇥ L

3 = 48⇥ 243 (3.14)

7 . m
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PS L (3.15)

11 . m
as
PS L (3.16)

P± =
1

2
(1 + �0) (3.17)

O
±
CB(x) = P±OCB(x) (3.18)

eAS is antisymmetric and ⌦-traceless,

✓
1

2

+◆
(3.19)

1 ! i�
5

(3.20)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC
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Interpolating operators for Chimera baryon

Analogous to the Lambda baryon in QCD, we construct the interpolating 
operator of a spin-1/2 Chimera baryon as

To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the 2-point correlator for mesons, it might

be sufficient to have a part of the operator in Eq. 4.2, where we choose the second term of

OCB,4,

O
k
CB,↵ = �iQ2 a

C Q
1 b⌦bc 

k ca
↵

= iQ
2 d T (C�

5)⌦daQ
1b⌦bc 

k ca
↵
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↵ , (4.3)

and its Dirac conjugate is
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CB,↵ = �i ca

↵⌦
cb⌦ad

Q2 d(C�
5)Q1 b

T
. (4.4)

Using this interpolating operator, we find the most generic propagator for the Chimera

baryon at positive Euclidean time t and vanishing momentum ~p
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where the fermion propagators are
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↵,� = hQ(t, ~x)a↵Q(0)b�i and S (t, ~x)
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For convenience let us define

Uac0 =
�
⌦T

S
2
Q(t, ~x)⌦

T
�
a,c0

, and Dca0 =
�
⌦T

S
1
Q(t, ~x)⌦

T
�
c,a0

. (4.7)
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where the trace and transpose are for the spinor indices.

In order to make the color contraction easier, we take one step further by antisymmetriz-

ing the color indices of the fundamental propagators U and D as follows. For convenience

we first define the fundamental propagators by only leaving the color indices after taking

the contraction of the spinor indices of the trace term in Eq. 4.8,
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⇥
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Then, the 2-point correlation function is
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where the trace and transpose are for the spinor indices.

In order to make the color contraction easier, we take one step further by antisymmetriz-

ing the color indices of the fundamental propagators U and D as follows. For convenience

we first define the fundamental propagators by only leaving the color indices after taking

the contraction of the spinor indices of the trace term in Eq. 4.8,
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To compute the baryon two-point correlation function and extract the mass, analogous
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,(4.5)

where the fermion propagators are

SQ(t, ~x)
a,b
↵,� = hQ(t, ~x)a↵Q(0)b�i and S (t, ~x)
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Then, we can rewrite the Chimera baryon
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0
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0
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,(4.8)

where the trace and transpose are for the spinor indices.

In order to make the color contraction easier, we take one step further by antisymmetriz-

ing the color indices of the fundamental propagators U and D as follows. For convenience

we first define the fundamental propagators by only leaving the color indices after taking

the contraction of the spinor indices of the trace term in Eq. 4.8,

U
0(t, ~x)a,c
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Now, we perform the antisymmetrization,
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where the fermion propagators in given representations are

We also consider the parity projections in the nonrelativistic limit.

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

m
f
0 = �0.6 (3.12)

� = 6.5, m
as
0 = �1.01, m

f
0 = �0.71 (3.13)

7 . m
f
PS L (3.14)

11 . m
as
PS L (3.15)

P± =
1

2
(1 + �0) (3.16)

O
±
CB(x) = P±OCB(x) (3.17)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons
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4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11
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⇣
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(4.2)

To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the 2-point correlator for mesons, it might

be sufficient to have a part of the operator in Eq. 4.2, where we choose the second term of

OCB,4,
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. (4.4)

Using this interpolating operator, we find the most generic propagator for the Chimera

baryon at positive Euclidean time t and vanishing momentum ~p
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where the fermion propagators are
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a,b
↵,� = hQ(t, ~x)a↵Q(0)b�i and S (t, ~x)
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where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11
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where the fermion propagators are
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Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

� . 6.4 (3.8)

�
c
⇠ 6.7 (3.9)

�
c
⇠ 6.5 (3.10)

� = 6.4 (3.11)

� ⇠ 6.4 (3.12)

am
f
0 = �0.6 (3.13)

� = 6.5, am
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0 = �1.01, am

f
0 = �0.71, T ⇥ L

3 = 48⇥ 243 (3.14)

7 . m
f
PS L (3.15)

11 . m
as
PS L (3.16)

P± =
1

2
(1 ± �0) (3.17)
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1

2
(1 + �0) (3.18)

O
±
CB(x) = P±OCB(x) (3.19)

eAS is antisymmetric and ⌦-traceless,

✓
1

2
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(3.20)

1 ! i�
5

(3.21)
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Results III: Chimera baryon
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Results IV: Masses of mesons & Chimera baryon 
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Finally, the Dirac operator for the 2-index antisymmetric representation D
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is obtained
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µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

am
f
0 = �0.6 (3.12)

� = 6.5, am
as
0 = �1.01, am

f
0 = �0.71, T ⇥ L

3 = 48⇥ 243 (3.13)

7 . m
f
PS L (3.14)

11 . m
as
PS L (3.15)

P± =
1

2
(1 + �0) (3.16)

O
±
CB(x) = P±OCB(x) (3.17)

eAS is antisymmetric and ⌦-traceless,

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 6 –

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

� . 6.4 (3.8)

�
c
⇠ 6.7 (3.9)

�
c
⇠ 6.5 (3.10)

� = 6.4 (3.11)

� ⇠ 6.4 (3.12)

am
f
0 = �0.6 (3.13)

� = 6.5, am
as
0 = �1.01, am

f
0 = �0.71, T ⇥ L

3 = 48⇥ 243 (3.14)

7 . m
f
PS L (3.15)

11 . m
as
PS L (3.16)

P± =
1

2
(1 + �0) (3.17)

O
±
CB(x) = P±OCB(x) (3.18)

eAS is antisymmetric and ⌦-traceless,

✓
1

2

+◆
(3.19)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

– 6 –



Summary & outlook

We have developed numerical techniques to simulate Sp(2N) lattice 
gauge theories coupled to fermions in the multiple representations.

The first lattice studies of the VU model with the exact flavor content required 
for CH & top-partial comp.: Sp(4) with Nf=2 F & nf=3 AS Dirac fermions. 

Weak coupling region: 

FV effects are under control:                     & 

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

m
f
0 = �0.6 (3.12)

� = 6.5, m
as
0 = �1.01, m

f
0 = �0.71 (3.13)

7 . m
f
PS L (3.14)

11 . m
as
PS L (3.15)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 6 –

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

m
f
0 = �0.6 (3.12)

� = 6.5, m
as
0 = �1.01, m

f
0 = �0.71 (3.13)

7 . m
f
PS L (3.14)

11 . m
as
PS L (3.15)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 6 –

Chimera baryon (top partner): parity projection, smearing & variational method

To do list

Generate ensembles at various values of     ,       ,         and calculate the low-
lying spectra of composite states: mass dependence & lattice artifacts
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Compute the (low-lying) Dirac eigenvalues

Chirally broken or conformal? How light is the chimera baryon?
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Thank you for your attention!



Backup I

From our previous studies of Nf=2 F Sp(4) & nf=3 AS Sp(4) we learned that 
1st order bulk phase transitions exist for              &              , respectively.

Uµ(x) = U
F
µ (x) 2 Sp(4) (3.2)

In order to construct the Dirac operator D
AS

for fermion fields  ab
in the 2-index

antisymmetric representation, we follow the prescription in [? ]. For Sp(2N), we define

an orthonormal basis e
(ab)
AS (with the multi-index (ab) running over ordered pairs with 1 

a < b  2N) for the appropriate vector space of 2N ⇥ 2N antisymmetric matrices. The

N(2N � 1)� 1 such matrices have the following non-vanishing entries. For b = N + a and

2  a  N

(e(ab)AS )c,N+c ⌘ �(e(ab)AS )N+c,c ⌘

8
<

:

1p
2 a (a�1)

, for c < a,

�(a�1)
p

2 a (a�1)
, for c = a,

(3.3)

and for b 6= N + a

(e(ab)AS )cd ⌘
1
p
2
(�ac�bd � �bc�ad) . (3.4)

The main difference compared to the case of SU(N) is that the base eAS is ⌦-traceless,

satisfying ⌦dc
⇣
e
(ab)
AS

⌘

cd
= 0. In the Sp(4) case, one can verify that the resulting 5 non-

vanishing matrices satisfy the orthonormalisation condition Tr e(ab)AS e
(cd)
AS = ��

(ab)(cd)
, while

the matrix e
(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

U
AS
µ (x) descends from the fundamental link variables Uµ(x), as

�
U

AS
µ

�
(ab)(cd)

(x) ⌘ Tr
h
(e(ab)AS )†Uµ(x)e

(cd)
AS U

T
µ (x)

i
, with a < b, c < d. (3.5)
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Figure 19. Plaquette susceptibilities χ, measured in HMC calculations with dynamical quarks,
for β = 6.6 (top panel) and β = 6.8 (bottom panel), as a function of the bare mass am0, for three
values of the lattice size (see legend).

Figure 20. Trajectories of plaquette values for dynamical-fermion calculations at β = 6.9. Different
colours represent various fermion masses, as reported in the legend.
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4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)
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