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bounds on the singlet pNGBs in Section IV. We o↵er our conclusions in Section V.

II. UNDERLYING MODELS FOR A COMPOSITE HIGGS WITH TOP PARTIAL

COMPOSITENESS

Coset HC  � �q�/q Baryon Name Lattice

SU(5)

SO(5)
⇥ SU(6)

SO(6)

SO(7)
5⇥ F 6⇥ Sp

5/6
 ��

M1

SO(9) 5/12 M2

SO(7)
5⇥ Sp 6⇥ F

5/6
  �

M3

SO(9) 5/3 M4

SU(5)

SO(5)
⇥ SU(6)

Sp(6)
Sp(4) 5⇥A2 6⇥ F 5/3  �� M5

p

SU(5)

SO(5)
⇥ SU(3)2

SU(3)

SU(4) 5⇥A2 3⇥ (F,F) 5/3
 ��

M6
p

SO(10) 5⇥ F 3⇥ (Sp,Sp) 5/12 M7

SU(4)

Sp(4)
⇥ SU(6)

SO(6)

Sp(4) 4⇥ F 6⇥A2 1/3
  �

M8
p

SO(11) 4⇥ Sp 6⇥ F 8/3 M9

SU(4)2

SU(4)
⇥ SU(6)

SO(6)

SO(10) 4⇥ (Sp,Sp) 6⇥ F 8/3
  �

M10

SU(4) 4⇥ (F,F) 6⇥A2 2/3 M11
p

SU(4)2

SU(4)
⇥ SU(3)2

SU(3)
SU(5) 4⇥ (F,F) 3⇥ (A2,A2) 4/9   � M12

TABLE I. Model details. The first column shows the EW and QCD colour cosets, respectively, followed

by the representations under the confining hypercolour (HC) gauge group of the EW sector fermions

 and the QCD coloured ones �. The �q�/q column indicates the ratio of charges of the fermions

under the non-anomalous U(1) combination, while “Baryon” indicate the typical top partner structure.

The column “Name” contains the model nomenclature from Ref. [27], while the last column marks

the models that are currently being considered on the lattice. Note that Sp indicates the spinorial

representation of SO(N), while F and A2 stand for the fundamental and two-index anti-symmetric

representations.

In this work we are interested in the underlying models for composite Higgs with top partial

compositeness defined in Ref. [24]. These models characterise the underlying dynamics below

the condensation scale ⇤ ⇡ 4⇡f , f being the decay constant of the pNGBs. As such, the need to

be outside of the conformal window: this leaves only 12 models [36], listed in Table I. They are

defined in terms of a confining gauge interaction, that we call hypercolour (HC), and two species

of fermions in two di↵erent irreducible representations of the HC. The two species of fermions

play di↵erent roles: the EW charged  generate the Higgs and the EW symmetry breaking
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Compared to the original EFT results in terms ofmf in [55], the above linearized ansatz
invloves10 unknow LECs to be determined from5 measurements. The remaining two LECs
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# of pNGBs = 5

4 of 5 PNGBs: Higgs doublets

Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

symmetry [17–19]. One extends the symmetry from SU(4) to SU(4)A ⇥ SU(4)B, with
SU(4)A weakly gauged, with coupling g⇢. Then one enlarges the field content to include
two non-linear sigma-model fields S and ⌃. The non-linear sigma-model S transforms as
the bifundamental of SU(4)B ⇥SU(4)A, while the field ⌃ transforms on the antisymmetric
of SU(4)A:

S ! UB S U †
A
, ⌃ ! UA⌃U

T

A . (2.14)

In a composite Higgs model, the SM gauge group SU(2)L⇥U(1)Y is a subgroup of SU(4)B.
The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = @µS � i g⇢SAµ , (2.15)
Dµ⌃ = @µ⌃ + i g⇢

�
Aµ⌃ + ⌃AT

µ

�
, (2.16)

and then L0 is replaced by all possible 2-derivative invariant operators made by S, ⌃, DS,
D⌃, together with the kinetic term for the gauge bosons. Both S and ⌃ are non-vanishing
in the vacuum, inducing the symmetry breaking pattern SU(4)A ⇥ SU(4)B ! Sp(4), and
all vectors are massive. h⌃i splits the mass of the 5 a1 and the 10 ⇢ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They
are linear combinations of the fluctuations of S and ⌃. The mass term for the pions is

Lm = �
v3

4
Tr

n
M S ⌃ST

o
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated
way, that will be discussed elsewhere [30].

In the absence of the antisymmetric condensate (for h⌃i = 0), ⇢ and a1 mesons would
be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking
SU(4) ! Sp(4). In the main body of the paper we use the mass splitting between ⇢

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at
high temperatures. The generalization to the case in which ⌃ is replaced by H̃ does not
require any new ingredients. In particular the restoration of the axial U(1)A and of the
chiral SU(4) can, at least in principle, be treated independently. We summarize in Table 2
the properties of the states discussed in the body of the paper. One of the purposes of this
paper is to make the first steps towards a quantitative assessment of the relation between
the two phenomena at high temperature, in the specific theory of interest here.
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SM EW

1 Sp(4) gauge theory with two-ßavor Dirac fundamental fermions

1.1 Sp(4) Yang-Mills Theory

We Þrst consider the pureSp(4) gauge theory.

Our choice of the generators ofSU(4) gauge group is as follows.

1.2 Algorithms

1.2.1 Gauge force and exponentiation

Sp(4) (1)

e (2)

gs (3)

(L 3 ! T) (4)

V (! ) = "
!
|! |2 " ! 2"2
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S(! , A ) =
#

1
4g2 tr( F µ! Fµ! ) + |D ! |2 + V (|! |) (6)

1

SO(6)SU(3)c x U(1)Y

SM Strong
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Figure 1 : Mass scan of the Sp(4) theory withNf = 3 anti-symmetric Wilson fermions at
! = 6 .4, 6.5 and 6.6 from left to right, respectively. The red and blue symbols denote the
expectation values of the plaquette!P" obtained from random (hot) and unit (cold) initial
conÞgurations on a84 lattice.

ö! a! b #
!

" a#! " b
"

(2.2)

Uµ(x) $ Sp(4) & j = 1 , 2, 3 (2.3)

! = 7 .62, 7.7, 7.85, 8.0, 8.2 (2.4)

öf PS ömPS ömV(T) ömAV ,AT ,S (2.5)

#
[dim(R)]

mV

f PS
% constant (2.6)

!0|Oav|ps" = !0|! 1$5$µ! 2|ps" # f ps pµ,

!0|Ov|v" = !0|! 1$µ! 2|v" # f v mv %µ,

!0|Oav|av" = !0|! 1$5$µ! 2|av" # f av mav %µ, (2.7)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we conÞrmed the existance of the Þrst-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of! = 6 .4, 6.5
and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identiÞed with the condition! >% 6.6. In this
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Sp(4) on the lattice

Lattice formulation with the standard Wilson gauge & fermion actions

3 Lattice setup

3.1 Lattice action

gauge sector: plaquette action
fermion sector: Wilson-Dirac formulation for fermions in two distinct representations
lattice parameters: lattice coupling ! , bare fermion massesmf

0 mas
0

S ! !
!

x

!

µ< !

"
1 "

1
4

Re Tr Uµ(x)U! (x + öµ)U 
µ(x + ö" )U 

! (x)
#

+ a4
!

x

Qj (x)D F Qj (x)+ a4
!

x

! k (x)D AS ! k(x),

(3.1)

D F Qj (x) ! (4/a + mf
0)Qj (x) "

1
2a

!

µ

$
(1 " #µ)UF

µ (x)Qj (x + öµ) + (1 + #µ)UF
µ (x " öµ)Qj (x " öµ)

%
,

D AS ! k(x) ! (4/a + mas
0 )! k (x) "

1
2a

!

µ

$
(1 " #µ)UAS

µ (x)! k (x + öµ) + (1 + #µ)UAS
µ (x " öµ)! k (x " öµ)

%
,

Uµ(x) = UF
µ (x) # Sp(4) (3.2)

In order to construct the Dirac operator D AS for fermion Þelds ! ab in the 2-index
antisymmetric representation, we follow the prescription in [12]. For Sp(2N ), we deÞne
an orthonormal basise(ab)

AS (with the multi-index (ab) running over ordered pairs with 1 $
a < b $ 2N ) for the appropriate vector space of2N % 2N antisymmetric matrices. The
N (2N " 1) " 1 such matrices have the following non-vanishing entries. Forb = N + a and
2 $ a $ N

(e(ab)
AS )c,N + c ! " (e(ab)

AS )N + c,c !

&
'

(

1&
2 a (a�1)

, for c < a,
�(a�1)&
2 a (a�1)

, for c = a,
(3.3)

and for b '= N + a

(e(ab)
AS )cd !

1
&

2
($ac$bd " $bc$ad) . (3.4)

The main difference compared to the case ofSU(N ) is that the base eAS is " -traceless,

satisfying " dc
)

e(ab)
AS

*

cd
= 0 . In the Sp(4) case, one can verify that the resulting5 non-

vanishing matrices satisfy the orthonormalisation conditionTr e(ab)
AS e(cd)

AS = " $(ab)( cd) , while

the matrix e(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

UAS
µ (x) descends from the fundamental link variablesUµ(x), as

+
UAS

µ

,
(ab)( cd)

(x) ! Tr
-
(e(ab)

AS )  Uµ(x)e(cd)
AS UT

µ (x)
.

, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).
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2.2 Low energy e ! ective Þeld theory

global symmetry breaking according toSU(4) ! SU(6)/Sp(4) ! SO(6)
low energy EFT, pseudo Nambu-Goldstone bosons (pNGBs), vector + axial vector mesons

2.3 Chimera baryons as top partners
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1, á á á, 4 are colour indexes in the gaugedSp(4), while i = 1 , á á á, 4 and k = 1 , á á á, 6
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The symmetries of the system are more transparent in the two-component notation, yet it is
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3 Lattice setup

3.1 Lattice action

gauge sector: plaquette action
fermion sector: Wilson-Dirac formulation for fermions in two distinct representations
lattice parameters: lattice coupling ! , bare fermion massesmf
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3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient ßow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 ßavored mesons

4.2 Chimera baryons

We consider the interpolating Þeld for a generic Chimera baryon of the form

O"
CB = D "#$%" ac" bdQi a

# Qj b
$ ! k cd

% , (4.1)

where a, b, c, d are colour indexes andi, j, k are ßavor indexes. The tensorD is some
combination of gamma matrices which projects onto the desired spin state with$, ! , #, %
the spinor indexes.

Analogous to a# baryon-type operator in QCD, we consider the operator which would
interpolate the Chimera baryon having the same quantum number of top-partner. We
particularly use OCB 4 in Eq. 2.11
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(4.2)
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In order to construct the Dirac operator D AS for fermion Þelds ! ab in the 2-index
antisymmetric representation, we follow the prescription in [12]. For Sp(2N ), we deÞne
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AS (with the multi-index (ab) running over ordered pairs with 1 $
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The main di! erence compared to the case ofSU(N ) is that the base eAS is " -traceless,

satisfying " dc
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= 0 . In the Sp(4) case, one can verify that the resulting5 non-

vanishing matrices satisfy the orthonormalisation conditionTr e(ab)
AS e(cd)

AS = " $(ab)( cd) , while

the matrix e(13)
AS vanishes identically. The explicit form of the antisymmetric link variables
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µ (x) descends from the fundamental link variablesUµ(x), as
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.

, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).
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Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).
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eAS is antisymmetric and " -traceless,

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient ßow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 ßavored mesons
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combination of gamma matrices which projects onto the desired spin state with$, ! , #, %
the spinor indexes.

Analogous to a# baryon-type operator in QCD, we consider the operator which would
interpolate the Chimera baryon having the same quantum number of top-partner. We
particularly use OCB 4 in Eq. 2.11
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µ (x) # Sp(4) (3.2)

In order to construct the Dirac operator D AS for fermion Þelds ! ab in the 2-index
antisymmetric representation, we follow the prescription in [12]. For Sp(2N ), we deÞne
an orthonormal basise(ab)

AS (with the multi-index (ab) running over ordered pairs with 1 $
a < b $ 2N ) for the appropriate vector space of2N % 2N antisymmetric matrices. The
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(e(ab)
AS )c,N + c ! " (e(ab)

AS )N + c,c !
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and for b '= N + a
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($ac$bd " $bc$ad) . (3.4)

The main difference compared to the case ofSU(N ) is that the base eAS is " -traceless,

satisfying " dc
)

e(ab)
AS

*

cd
= 0 . In the Sp(4) case, one can verify that the resulting5 non-

vanishing matrices satisfy the orthonormalisation conditionTr e(ab)
AS e(cd)

AS = " $(ab)( cd) , while

the matrix e(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

UAS
µ (x) descends from the fundamental link variablesUµ(x), as

+
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µ

,
(ab)( cd)

(x) ! Tr
-
(e(ab)

AS )  Uµ(x)e(cd)
AS UT
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.

, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).
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Results I: bare parameter space

Figure 1 : A schematic phase diagram of the bare parameter space ofSp(4) gauge theories
coupled to Nf = 2 fundamental (F) and nf = 3 two-index antisymmetric (AS) Dirac
fermions. The three relevant bare parameters are the lattice gauge coupling,! , and the
bare fermions masses,mf

0 and mas
0 , for the fundamental and antisymmetric representations.

The black surface corresponds to the boundary on which a Þrst-order bulk phase transition
occurs, while the red, blue and green denote the Þrst-order lines for three values of! , one
for the deep strong coupling regime and the others for the intemeriate regime, respectively.
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Comparing Eqs. 4.16 and 4.22, we conclude that the Chimera propagators built fromO1

and O2 are identical to each other.

5 Numerical results

5.1 Phase struction of the bare parameter space

In the preliminary analysis we Þrst conÞrmed the existance of the Þrst-order bulk phase
transition in the space of bare parameters, the lattice coupling! and the massesmas

0 and mf
0

of fermions in the two-index antisymmetric (AS) and the fundamental (F) representations,
by monitoring the plaquette values. In Fig. 1, we show the schematic diagram of the bulk
structure of Sp(4) gauge theory coupled toNf = 2 fundamental and nf = 3 antisymmetric
fermions. The black surface corresponds to which Þrst-order bulk phase transition occurs.
We recall that the boundaries between weak and strong coupling regimes for F and AS are
around ! = 6 .7 [1] and 6.5 [2], respectively. (In a conservative manner, we have restricted
the weak coupling regimes by! $ 6.8 and $ 6.6, respectively.) By including all the
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4.2 Chimera baryons

We consider the interpolating Þeld for a generic Chimera baryon of the form

O!
CB = D !"#$ " ac" bdQi a

" Qj b
# ! k cd

$ , (4.1)

where a, b, c, d are colour indexes andi, j, k are ßavor indexes. The tensorD is some
combination of gamma matrices which projects onto the desired spin state with" , ! , #, $
the spinor indexes.

Analogous to a# baryon-type operator in QCD, we consider the operator which would
interpolate the Chimera baryon having the same quantum number of top-partner. We
particularly use OCB 4 in Eq. 2.11
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(4.2)
To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the2-point correlator for mesons, it might
be su! cient to have a part of the operator in Eq. 4.2, where we choose the second term of
OCB,4,

Ok
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Figure 1 : A schematic phase diagram of the bare parameter space ofSp(4) gauge theories
coupled to Nf = 2 fundamental (F) and nf = 3 two-index antisymmetric (AS) Dirac
fermions. The three relevant bare parameters are the lattice gauge coupling,! , and the
bare fermions masses,mf

0 and mas
0 , for the fundamental and antisymmetric representations.

The black surface corresponds to the boundary on which a Þrst-order bulk phase transition
occurs, while the red, blue and green denote the Þrst-order lines for three values of! , one
for the deep strong coupling regime and the others for the intemeriate regime, respectively.
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Comparing Eqs. 4.16 and 4.22, we conclude that the Chimera propagators built fromO1
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dynamical fermions, we Þnd that the weak coupling regime extends to the smaller values of
! in a wide region of the parameter space, e.g. negative numbers for both the bare masses,
m

as
0 < 0 and m

f
0 < 0. The three colored lines roughly represent the Þrst-order lines for

! = 6 .3 (red), 6.4 (blue) and 6.5 (green). We note that the Þrst-order surface is asymmetric
with respect to m

as
0 and m

f
0 hinted by the di ! erent values for the phase boundaries in the

cases of F and AS representations.
We numerically explored the phase space by computing the average plaquette values.

LetÕs us focus on the case of! = 6 .4 which corresponds to the blue line in Fig.1.

5.2 Finite volume e ! ects

5.3 Low-lying spectrum
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Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
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A Notations and useful relations

Before we write the explicit expressions for the Chimera baryon, let us summarize some
useful relations taken from our quenched paper Ref. [11].

Ð 11 Ð

If both Nf=2 F & nf=3 AS Dirac fermions are present, the weak coupling 

region is extended to the smaller beta value of             .
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Finally, the Dirac operator for the 2-index antisymmetric representation D
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O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)

– 6 –

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

m
f
0 = �0.6 (3.12)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)

– 6 –
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Results II: Finite Volume effects

The di!erent signs of Þnite volume e!ects can be understood from the 

low-energy e!ective Þeld theory.

Figure 7 : Vector meson mass in units of pseudoscalar decay constant inSp(4) theory with
fundamental matter. The sharp and opaque colors are for theNf = 3 dynamical and the
Nf = 0 quenched fermions, respectively. In the legend,QF und and DFund denote for the
results with quenched and dynamical fundamental fermions, respectively.

CSD3 was funded by BEIS capital funding via STFC capital grants ST/P002307/1 and
ST/R002452/1 and STFC operations grant ST/R00689X/1. DiRAC is part of the National
e-Infrastructure.

A Finite volume correction in the chiral perturbation theory

The Þnite volume correction to the pseudoscalar mass can be understood in the framework
of chiral perturbation theory ( ! PT). We start with the inÞnite volume version of continuum
! PT, where the next-to-leading order (NLO) results are su! cient to our discussion. The
pseudoscalar mass at NLO is

m2
PS = M 2

!
1 + aM

A(M )
F 2 + bM (µ)

M 2

F 2 + O(M 4)
"

, (A.1)

whereM is the leading order (LO) pseudoscalar mass, i.e.M 2 = 2B0mq, and the function
A, a consequence of one-loop calculation, is given as

A(M ) = !
M 2

16" 2 log
M 2

µ2 , (A.2)

with µ the renormalization scalar andF the pseudoscalar decay constant in the chiral limit.
As the Þnite volume correction arises from the loop computation in which the integral is
replaced by a Þnite sum, the Þnite-volume version of Eq. (A.1) can be written as

m2
PS = M 2

!
1 + aM

A(M ) + AFV (M )
F 2 + bM (µ)

M 2

F 2 + O(M 4)
"

. (A.3)
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Here AFV denotes the Þnite volume correction whose asymptotic form is [5]

AFV (M ) ML ! 1!" !
3

4⇡2

!
M ⇡

2L 3

" 1/ 2

exp[! ML ]. (A.4)

As discussed in details in Ref. [3], the coe! cients are di" erent depending on the sym-
metry breaking pattern, while the rest of the functional form in Eq. (A.3) remains same.
In the case ofSU(2Nf ) " SO(2Nf ) relevant to our work, the coe! cient aM is given as

aM =
1
2

!
1

2Nf
. (A.5)

In the other two cases, the coe! cients are

aM = !
1

Nf
, for SU(Nf ) # SU(Nf ) " SU(Nf ),

aM = !
1
2

!
1

Nf
, for SU(2Nf ) " Sp(2Nf ). (A.6)

By comparing those coe! cients, we immediately notice that Eq. (A.5) has di" erent sign
with Eq. ( A.6) if Nf is greater than or equal to unity. As we already saw in Ref. [4], the
Þnite volume correction enhances the masses of pseudoscalar and vetor mesons in the case
of Sp(4) with fundamental ßavors. Therefore, the results shown in Fig.4 are consistent
with the �PT prediction in which now the Þnite volume correction lower the masses.
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By comparing those coefficients, we immediately notice that Eq. (A.5) has different sign
with Eq. (A.6) if Nf is greater than or equal to unity. As we already saw in Ref. [4], the
finite volume correction enhances the masses of pseudoscalar and vetor mesons in the case
of Sp(4) with fundamental flavors. Therefore, the results shown in Fig. 4 are consistent
with the �PT prediction in which now the finite volume correction lower the masses.
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Chimera baryon as top partner

Recall the global symmetry and its spontaneous breaking

35

Appendix B: A note about massive vectors

A massive vector of massm in D = 4 space-time dimensions can be described by two equivalent quantum theories,
with di ! erent Þeld content and Lagrangian densities (see for instance the detailed discussions in Refs. [113Ð116] and
references therein).

¥ A vector Þeld Aµ couples to a scalar Þeld! , with Lagrangian density

L 0 = !
1
4

Fµ! F µ ! !
1
2

!
" µ ! + mA µ

" !
" µ ! + mA µ

"
, (B1)

where Fµ! = " µ A! ! " ! Aµ . L 0 is invariant under the gauge transformations

! " ! + m# , Aµ " Aµ ! " µ # , (B2)

with # = #(x). The gauge choice# = ! ! /m removes! from the Lagrangian density, which then depends only
on a massive vector Þeld.

¥ A 2-index antisymmetric form Bµ! is coupled to a vectorA µ (not to be confused with Aµ ), and the Lagrangian
density is

L 1 = !
1
12

Gµ!" Gµ!" !
1
4

H µ! H µ! , (B3)

where Fµ! # " µ A ! ! " ! A µ , H µ! # Fµ! + m Bµ! and Gµ!" # " µ B!" + " " Bµ ! + " ! B" µ . The Lagrangian L 1 is
invariant under the gauge transformation

A µ " A µ + m#µ , Bµ! " Bµ ! ! " µ #! + " ! #µ , (B4)

with the vector #µ = #µ (x). The gauge choice#µ = ! A µ /m removesA µ from the Lagrangian density, which
then depends only on a massive 2-form Þeld.

The Lagrangian L 1 can also be rewritten, by deÞningKµ! # 1
2m $µ!"# H "# , in the form

L 1 =
1
2

" $ Kµ$ " %Kµ
% +

m2

4
Kµ! Kµ ! . (B5)

Gauge invariance is not manifest in this form. The LagrangiansL 0 and L 1 are equivalent at the level of the path
integrals they deÞne [113Ð116]. Hence, the use of anti-symmetric massive 2-index tensors provides an alternative,
equivalent descriptions of massive vectors.

In physical terms, there is no di! erence between these two (or rather, three) formulations. Important di! erences
are introduced by the coupling to matter Þelds and sources. For example, one can couple fermions toAµ via the new
term

L A = ig øQ%µ Aµ PL Q , (B6)

with Q a Dirac fermion and g the coupling. For the antisymmetric tensor, one may write

L B = g øQ&µ! Bµ ! PL Q . (B7)

While L A couples the spin-1 Þeld to the LH component only ofQ, in L B the LH and RH projections are coupled to
one another, so that while L 0 and L 1 in isolation deÞne the same theory, the addition ofL A or L B leaves di! erent
global symmetries and di! erent coupled theories.

Appendix C: About Lie groups, algebras and SM embedding

Here we summarise some group theory notions relevant for models of composite Higgs and top quark compositeness
based on theSU(4)/Sp(4) $ SU(6)/SO (6) coset [12, 43]. We do not repeat unnecessary detailsÑin particular, our
special choice ofSU(4) generators can be found elsewhere [50]Ñbut we explicitly show the embedding of the SM
gauge group (and Þelds, when useful).

Then, the top partner can be sourced by the operators
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antisymmetric representation of Sp(4) matches the number of colours in theSU(3)c gauge group of the standard
model. The natural subgroup SU(3)L " SU(3)R # SU(6) is generated by

tB
L =

1
2

)
#B 03

03 03

*
, tB

R =
1
2

)
03 03

03 $ #B !

*
, (C4)

with #B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr#A #B = 2$AB (so that
Tr tA

L tB
L = 1

2 $AB ).
By deÞning tB

c & (tB
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R ), with the choice of %in Eq. (5), one can verify that %tB
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= if ABC tC

c are those of thesu(3)c algebra, and that Tr tA
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c = $AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6" 6 matrices acting on 2-component
spinors. We hence identifytB

c as the generators of theSU(3)c gauge symmetry of the Standard Model. An additional,
independent, unbroken generator ofSU(6) is given by

X &
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*
, (C5)

which also commutes with the generators ofSU(3)c. The generator Y of the hyperchargeU(1)Y gauge symmetry of
the Standard Model is a linear combination ofX and T3

R (see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e" ective
potential due to the gauging of the relevant SM subgroups of the globalSU(4) " SU(6) symmetry, and discuss their
e" ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external Þeld method, and borrow the regulated Coleman-Weinberg potentialV1 from Ref. [117],
computed by assuming that a hard momentum cut-o" # is applied to the 1-loop integrals. With our conventions we
write

V1 =
# 2

32" 2 STr M 2 +
1

64" 2 STr
-

(M 2)2 log
M 2

# 2 + ci

.
, (C6)
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Together, these two setsOPS,i and O!
PS,i , with i = 1 , 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in aSO(4) symmetric two-higgs doublet
model. For completeness, a generic,2 ! 2 complex matrix transforming as a (2, 2) of
SU(2)L ! SU(2)R can be written as as

! =
1

"
2

!
hr 12 + i ! a

r " a
"

+
i

"
2

!
hi 12 + i ! a

i " a
"

, (2.10)

with a = 1 , 2, 3, " a the Pauli matrices, and the eight Þeldshr,i and ! a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a
way that one can construct bilinear couplings with the standard-model quarks without vio-
lating any of the symmetries. For what concernsSU(2)L , the aforementioned assignments
in Eqs. (2.6) and (2.9) would su! ce to give the quantum numbers of the left-handed and
right-handed quarks, in terms of the4 of SO(4). In order to add SU(3) colour, and to form
a fermion bound state, we use the anti-symmetric# k ab. We recall that SU(6) admits a
natural SU(3)L ! SU(3)R subgroup, and that both the mass term and the strong-coupling
vacuum breakSU(3)L ! SU(3)R # SU(3)V . We identify this SU(3)V with the SU(3)c of
QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this
will combine with the T3 generator ofSU(2)R $ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply
replace" ab in Eq. (2.5) with " ab # " acPL,R # k cd" db. Hence, the operatorsOL,R

CB are the
following:

OL,R
CB,1 =

!
Q1 a$5Q2 b + Q2 a$5Q1 b

"
" bcPL,R # k ca ,

OL,R
CB,2 =

!
%iQ1 a$5Q2 b + i Q2 a$5Q1 b

"
" bcPL,R # k ca , (2.11)

OL,R
CB,4 = %i

!
Q1 aQ2 b

C + Q2 a
C Q1 b

"
" bcPL,R # k ca ,

OL,R
CB,5 = i

!
%i Q1 aQ2 b

C + iQ2 a
C Q1 b

"
" bcPL,R # k ca .

Both the left-handed and right-handed components transform as3 of SU(3)c, and 4 of
SO(4) = SU(2)L ! SU(2)R. We write explicitly also the operators obtained by replacing
14 # i$5 inside the bilinear in Q:

O! L,R
CB,1 = i

!
Q1 aQ2 b + Q2 aQ1 b

"
" bcPL,R # k ca ,

O! L,R
CB,2 =

!
Q1 aQ2 b % Q2 aQ1 b

"
" bcPL,R # k ca , (2.12)

O! L,R
CB,4 =

!
Q1 a$5Q2 b

C + Q2 a
C $5Q1 b

"
" bcPL,R # k ca ,

O! L,R
CB,5 = i

!
Q1 a$5Q2 b

C %Q2 a
C $5Q1 b

"
" bcPL,R # k ca .

Analogous expressions can be derived for the twoSO(4) singlets and the two Sp(4)
singlets, obtained from adding the left-handed and right-handed projections of the anti-
symmetric # k ab to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top
partners are hence sourced by theOL,R

CB operators, while theO! L,R
CB operators source heavier

replicas, which one expects to become degenerate with those ofOL,R
CB in the limit in which

U(1)A is restored.
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The SU(6)/SO (6) coset is relevant to top compositeness. The choice ofnf = 3 Dirac fermions on the 2-index

antisymmetric representation of Sp(4) matches the number of colours in theSU(3)c gauge group of the standard
model. The natural subgroup SU(3)L " SU(3)R # SU(6) is generated by
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03 03

03 $ #B !
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with #B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr#A #B = 2$AB (so that
Tr tA

L tB
L = 1

2 $AB ).
By deÞning tB

c & (tB
L + tB

R ), with the choice of %in Eq. (5), one can verify that %tB
c + tB T

c %= 0, that the structure
constants

+
tA
c , tB

c

,
= if ABC tC

c are those of thesu(3)c algebra, and that Tr tA
c tB

c = $AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6" 6 matrices acting on 2-component
spinors. We hence identifytB

c as the generators of theSU(3)c gauge symmetry of the Standard Model. An additional,
independent, unbroken generator ofSU(6) is given by

X &
)

13 03

03 $ 13

*
, (C5)

which also commutes with the generators ofSU(3)c. The generator Y of the hyperchargeU(1)Y gauge symmetry of
the Standard Model is a linear combination ofX and T3

R (see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e" ective
potential due to the gauging of the relevant SM subgroups of the globalSU(4) " SU(6) symmetry, and discuss their
e" ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external Þeld method, and borrow the regulated Coleman-Weinberg potentialV1 from Ref. [117],
computed by assuming that a hard momentum cut-o" # is applied to the 1-loop integrals. With our conventions we
write

V1 =
# 2

32" 2 STr M 2 +
1

64" 2 STr
-

(M 2)2 log
M 2

# 2 + ci

.
, (C6)

Together, these two setsOPS,i and O!
PS,i , with i = 1 , 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in aSO(4) symmetric two-higgs doublet
model. For completeness, a generic,2 ! 2 complex matrix transforming as a (2, 2) of
SU(2)L ! SU(2)R can be written as as

! =
1

"
2

!
hr 12 + i ! a

r " a
"

+
i

"
2

!
hi 12 + i ! a

i " a
"

, (2.10)

with a = 1 , 2, 3, " a the Pauli matrices, and the eight Þeldshr,i and ! a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a
way that one can construct bilinear couplings with the standard-model quarks without vio-
lating any of the symmetries. For what concernsSU(2)L , the aforementioned assignments
in Eqs. (2.6) and (2.9) would su! ce to give the quantum numbers of the left-handed and
right-handed quarks, in terms of the4 of SO(4). In order to add SU(3) colour, and to form
a fermion bound state, we use the anti-symmetric# k ab. We recall that SU(6) admits a
natural SU(3)L ! SU(3)R subgroup, and that both the mass term and the strong-coupling
vacuum breakSU(3)L ! SU(3)R # SU(3)V . We identify this SU(3)V with the SU(3)c of
QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this
will combine with the T3 generator ofSU(2)R $ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply
replace" ab in Eq. (2.5) with " ab # " acPL,R # k cd" db. Hence, the operatorsOL,R

CB are the
following:

OL,R
CB,1 =

!
Q1 a$5Q2 b + Q2 a$5Q1 b

"
" bcPL,R # k ca ,

OL,R
CB,2 =

!
%iQ1 a$5Q2 b + i Q2 a$5Q1 b

"
" bcPL,R # k ca , (2.11)

OL,R
CB,4 = %i

!
Q1 aQ2 b

C + Q2 a
C Q1 b

"
" bcPL,R # k ca ,

OL,R
CB,5 = i

!
%i Q1 aQ2 b

C + iQ2 a
C Q1 b

"
" bcPL,R # k ca .

Both the left-handed and right-handed components transform as3 of SU(3)c, and 4 of
SO(4) = SU(2)L ! SU(2)R. We write explicitly also the operators obtained by replacing
14 # i$5 inside the bilinear in Q:

O! L,R
CB,1 = i

!
Q1 aQ2 b + Q2 aQ1 b

"
" bcPL,R # k ca ,

O! L,R
CB,2 =

!
Q1 aQ2 b % Q2 aQ1 b

"
" bcPL,R # k ca , (2.12)

O! L,R
CB,4 =

!
Q1 a$5Q2 b

C + Q2 a
C $5Q1 b

"
" bcPL,R # k ca ,

O! L,R
CB,5 = i

!
Q1 a$5Q2 b

C %Q2 a
C $5Q1 b

"
" bcPL,R # k ca .

Analogous expressions can be derived for the twoSO(4) singlets and the two Sp(4)
singlets, obtained from adding the left-handed and right-handed projections of the anti-
symmetric # k ab to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top
partners are hence sourced by theOL,R

CB operators, while theO! L,R
CB operators source heavier

replicas, which one expects to become degenerate with those ofOL,R
CB in the limit in which

U(1)A is restored.
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Chimera baryon as top partner

Recall the global symmetry and its spontaneous breaking
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Appendix B: A note about massive vectors

A massive vector of massm in D = 4 space-time dimensions can be described by two equivalent quantum theories,
with di ! erent Þeld content and Lagrangian densities (see for instance the detailed discussions in Refs. [113Ð116] and
references therein).

¥ A vector Þeld Aµ couples to a scalar Þeld! , with Lagrangian density

L 0 = !
1
4

Fµ! F µ ! !
1
2

!
" µ ! + mA µ

" !
" µ ! + mA µ

"
, (B1)

where Fµ! = " µ A! ! " ! Aµ . L 0 is invariant under the gauge transformations

! " ! + m# , Aµ " Aµ ! " µ # , (B2)

with # = #(x). The gauge choice# = ! ! /m removes! from the Lagrangian density, which then depends only
on a massive vector Þeld.

¥ A 2-index antisymmetric form Bµ! is coupled to a vectorA µ (not to be confused with Aµ ), and the Lagrangian
density is

L 1 = !
1
12

Gµ!" Gµ!" !
1
4

H µ! H µ! , (B3)

where Fµ! # " µ A ! ! " ! A µ , H µ! # Fµ! + m Bµ! and Gµ!" # " µ B!" + " " Bµ ! + " ! B" µ . The Lagrangian L 1 is
invariant under the gauge transformation

A µ " A µ + m#µ , Bµ! " Bµ ! ! " µ #! + " ! #µ , (B4)

with the vector #µ = #µ (x). The gauge choice#µ = ! A µ /m removesA µ from the Lagrangian density, which
then depends only on a massive 2-form Þeld.

The Lagrangian L 1 can also be rewritten, by deÞningKµ! # 1
2m $µ!"# H "# , in the form

L 1 =
1
2

" $ Kµ$ " %Kµ
% +

m2

4
Kµ! Kµ ! . (B5)

Gauge invariance is not manifest in this form. The LagrangiansL 0 and L 1 are equivalent at the level of the path
integrals they deÞne [113Ð116]. Hence, the use of anti-symmetric massive 2-index tensors provides an alternative,
equivalent descriptions of massive vectors.

In physical terms, there is no di! erence between these two (or rather, three) formulations. Important di! erences
are introduced by the coupling to matter Þelds and sources. For example, one can couple fermions toAµ via the new
term

L A = ig øQ%µ Aµ PL Q , (B6)

with Q a Dirac fermion and g the coupling. For the antisymmetric tensor, one may write

L B = g øQ&µ! Bµ ! PL Q . (B7)

While L A couples the spin-1 Þeld to the LH component only ofQ, in L B the LH and RH projections are coupled to
one another, so that while L 0 and L 1 in isolation deÞne the same theory, the addition ofL A or L B leaves di! erent
global symmetries and di! erent coupled theories.

Appendix C: About Lie groups, algebras and SM embedding

Here we summarise some group theory notions relevant for models of composite Higgs and top quark compositeness
based on theSU(4)/Sp(4) $ SU(6)/SO (6) coset [12, 43]. We do not repeat unnecessary detailsÑin particular, our
special choice ofSU(4) generators can be found elsewhere [50]Ñbut we explicitly show the embedding of the SM
gauge group (and Þelds, when useful).

We also consider the            counterparts (              , expected to be heavier)

where            subgroup of            ~               gauge group in SM  &
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The SU(4)/Sp(4) coset governs the Higgs sector of the Standard Model. Given the form of! in Eq. (5), the
unbroken subgroupSO(4) ! SU(2)L " SU(2)R is the subset of the unbroken globalSp(4) # SU(4) that is generated
by the following elements of the associated algebra:

T1
L =

1
2

!

"
#

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

$

%
& , T2

L =
1
2

!

"
#

0 0 $ i 0
0 0 0 0
i 0 0 0
0 0 0 0

$

%
& , T3

L =
1
2

!

"
#

1 0 0 0
0 0 0 0
0 0 $ 1 0
0 0 0 0

$

%
& , (C1)

T1
R =

1
2

!

"
#

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

$

%
& , T2

R =
1
2

!

"
#

0 0 0 0
0 0 0 $ i
0 0 0 0
0 i 0 0

$

%
& , T3

R =
1
2

!

"
#

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 $ 1

$

%
& . (C2)

The TL generators satisfy the SU(2)L algebra
'
T i

L , T j
L

(
= i ! ijk Tk

L , and similarly
'
T i

R , T j
R

(
= i ! ijk Tk

R , while
'
T i

L , T j
R

(
= 0. In the vacuum aligned with ! in Eq. (5), this is the natural choice of embedding of theSO(4) symme-

tries of the Higgs potential. Following the notation in Refs. [50, 62], the matrix of the 5 pNGB Þelds parametrising
the SU(4)/Sp(4) coset is

" (x) =
1

2
%

2

!

"
#

" 3(x) " 1(x) $ i " 2(x) 0 $ i " 4(x) + " 5(x)
" 1(x) + i " 2(x) $ " 3(x) i " 4(x) $ " 5(x) 0

0 $ i " 4(x) $ " 5(x) " 3(x) " 1(x) + i " 2(x)
i " 4(x) + " 5(x) 0 " 1(x) $ i " 2(x) $ " 3(x)

$

%
& . (C3)

The real Þelds" 1, " 2, " 4, and " 5 combine into the Higgs doublet, while " 3 is a SM singlet.
The SU(6)/SO (6) coset is relevant to top compositeness. The choice ofnf = 3 Dirac fermions on the 2-index

antisymmetric representation of Sp(4) matches the number of colours in theSU(3)c gauge group of the standard
model. The natural subgroup SU(3)L " SU(3)R # SU(6) is generated by

tB
L =

1
2

)
#B 03

03 03

*
, tB

R =
1
2

)
03 03

03 $ #B !

*
, (C4)

with #B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr#A #B = 2$AB (so that
Tr tA

L tB
L = 1

2 $AB ).
By deÞning tB

c & (tB
L + tB

R ), with the choice of %in Eq. (5), one can verify that %tB
c + tB T

c %= 0, that the structure
constants

+
tA
c , tB

c

,
= if ABC tC

c are those of thesu(3)c algebra, and that Tr tA
c tB

c = $AB is twice the fundamental. The
latter property is due to the fact that we are writing the SU(3)c generators as 6" 6 matrices acting on 2-component
spinors. We hence identifytB

c as the generators of theSU(3)c gauge symmetry of the Standard Model. An additional,
independent, unbroken generator ofSU(6) is given by

X &
)

13 03

03 $ 13

*
, (C5)

which also commutes with the generators ofSU(3)c. The generator Y of the hyperchargeU(1)Y gauge symmetry of
the Standard Model is a linear combination ofX and T3

R (see also Ref. [36] and references therein).

1. Weakly coupling the SM gauge group

In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e" ective
potential due to the gauging of the relevant SM subgroups of the globalSU(4) " SU(6) symmetry, and discuss their
e" ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
global symmetry one breaks it. We also identify the decomposition of the representations according to the unbroken
subgroup.

We adopt the external Þeld method, and borrow the regulated Coleman-Weinberg potentialV1 from Ref. [117],
computed by assuming that a hard momentum cut-o" # is applied to the 1-loop integrals. With our conventions we
write
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with #B the eight hermitian Gell-Mann matrices, normalised according to the relation Tr#A #B = 2$AB (so that
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R ), with the choice of %in Eq. (5), one can verify that %tB
c + tB T

c %= 0, that the structure
constants

+
tA
c , tB

c

,
= if ABC tC

c are those of thesu(3)c algebra, and that Tr tA
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c as the generators of theSU(3)c gauge symmetry of the Standard Model. An additional,
independent, unbroken generator ofSU(6) is given by
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which also commutes with the generators ofSU(3)c. The generator Y of the hyperchargeU(1)Y gauge symmetry of
the Standard Model is a linear combination ofX and T3

R (see also Ref. [36] and references therein).
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In this Appendix, we perform a technical exercise. We compute the (divergent) contributions to the e" ective
potential due to the gauging of the relevant SM subgroups of the globalSU(4) " SU(6) symmetry, and discuss their
e" ects on the potential of the pNGBs. The purpose of this exercise is to show explicitly how by gauging part of the
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which transform 3 of               and 4 of            .

Together, these two setsOPS,i and O!
PS,i , with i = 1 , 2, 4, 5 form a complete set of

eight spin-0 sources transforming as a the scalars in aSO(4) symmetric two-higgs doublet
model. For completeness, a generic,2 ! 2 complex matrix transforming as a (2, 2) of
SU(2)L ! SU(2)R can be written as as

! =
1

"
2

!
hr 12 + i ! a

r " a
"

+
i

"
2

!
hi 12 + i ! a

i " a
"

, (2.10)

with a = 1 , 2, 3, " a the Pauli matrices, and the eight Þeldshr,i and ! a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a
way that one can construct bilinear couplings with the standard-model quarks without vio-
lating any of the symmetries. For what concernsSU(2)L , the aforementioned assignments
in Eqs. (2.6) and (2.9) would su! ce to give the quantum numbers of the left-handed and
right-handed quarks, in terms of the4 of SO(4). In order to add SU(3) colour, and to form
a fermion bound state, we use the anti-symmetric# k ab. We recall that SU(6) admits a
natural SU(3)L ! SU(3)R subgroup, and that both the mass term and the strong-coupling
vacuum breakSU(3)L ! SU(3)R # SU(3)V . We identify this SU(3)V with the SU(3)c of
QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this
will combine with the T3 generator ofSU(2)R $ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply
replace" ab in Eq. (2.5) with " ab # " acPL,R # k cd" db. Hence, the operatorsOL,R

CB are the
following:

OL,R
CB,1 =

!
Q1 a$5Q2 b + Q2 a$5Q1 b

"
" bcPL,R # k ca ,

OL,R
CB,2 =

!
%iQ1 a$5Q2 b + i Q2 a$5Q1 b

"
" bcPL,R # k ca , (2.11)

OL,R
CB,4 = %i

!
Q1 aQ2 b

C + Q2 a
C Q1 b

"
" bcPL,R # k ca ,

OL,R
CB,5 = i

!
%i Q1 aQ2 b

C + iQ2 a
C Q1 b

"
" bcPL,R # k ca .

Both the left-handed and right-handed components transform as3 of SU(3)c, and 4 of
SO(4) = SU(2)L ! SU(2)R. We write explicitly also the operators obtained by replacing
14 # i$5 inside the bilinear in Q:

O! L,R
CB,1 = i

!
Q1 aQ2 b + Q2 aQ1 b

"
" bcPL,R # k ca ,

O! L,R
CB,2 =

!
Q1 aQ2 b % Q2 aQ1 b

"
" bcPL,R # k ca , (2.12)
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!
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"
" bcPL,R # k ca ,

O! L,R
CB,5 = i

!
Q1 a$5Q2 b

C %Q2 a
C $5Q1 b

"
" bcPL,R # k ca .

Analogous expressions can be derived for the twoSO(4) singlets and the two Sp(4)
singlets, obtained from adding the left-handed and right-handed projections of the anti-
symmetric # k ab to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top
partners are hence sourced by theOL,R

CB operators, while theO! L,R
CB operators source heavier

replicas, which one expects to become degenerate with those ofOL,R
CB in the limit in which

U(1)A is restored.
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model. For completeness, a generic,2 ! 2 complex matrix transforming as a (2, 2) of
SU(2)L ! SU(2)R can be written as as

! =
1

"
2

⇣
hr 12 + i⇡a

r ⌧
a
⌘
+

i
"
2

⇣
hi 12 + i⇡a

i ⌧
a
⌘

, (2.10)

with a = 1, 2, 3, ⌧a the Pauli matrices, and the eight Þeldshr,i and ⇡a
r,i all real.

The chimera baryons must have the same quantum numbers as the top quark, in such a
way that one can construct bilinear couplings with the standard-model quarks without vio-
lating any of the symmetries. For what concernsSU(2)L , the aforementioned assignments
in Eqs. (2.6) and (2.9) would su! ce to give the quantum numbers of the left-handed and
right-handed quarks, in terms of the4 of SO(4). In order to add SU(3) colour, and to form
a fermion bound state, we use the anti-symmetric k ab. We recall that SU(6) admits a
natural SU(3)L ! SU(3)R subgroup, and that both the mass term and the strong-coupling
vacuum breakSU(3)L ! SU(3)R # SU(3)V . We identify this SU(3)V with the SU(3)c of
QCD. We also notice that a U(1)X that commutes with SU(3)V is also unbroken, and this
will combine with the T3 generator ofSU(2)R $ SO(4) to yield ordinary hypercharge.

To add the fermion that transforms in the antisymmetric representation, we can simply
replace" ab in Eq. (2.5) with " ab # " acPL,R # k cd" db. Hence, the operatorsOL,R

CB are the
following:

OL,R
CB,1 =

⇣
Q1 a�5Q2 b + Q2 a�5Q1 b

⌘
" bcPL,R # k ca ,

OL,R
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⇣
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⌘
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Both the left-handed and right-handed components transform as3 of SU(3)c, and 4 of
SO(4) = SU(2)L ! SU(2)R. We write explicitly also the operators obtained by replacing
14 # i�5 inside the bilinear in Q:
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Analogous expressions can be derived for the twoSO(4) singlets and the two Sp(4)
singlets, obtained from adding the left-handed and right-handed projections of the anti-
symmetric # k ab to the singlets in Eqs. (2.7) and (2.8), and their CP partners. The top
partners are hence sourced by theOL,R

CB operators, while theO! L,R
CB operators source heavier

replicas, which one expects to become degenerate with those ofOL,R
CB in the limit in which

U(1)A is restored.
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See Talk by H. Hsiao

Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).

! ! 6.7 (3.6)

! ! 6.5 (3.7)

! ! 6.4 (3.8)

! c ! 6.7 (3.9)

! c ! 6.5 (3.10)

! = 6 .4 (3.11)

! ! 6.4 (3.12)

a mf
0 = " 0.6 (3.13)

! = 6 .5, a mas
0 = " 1.01, a mf

0 = " 0.71, T # L 3 = 48 # 243 (3.14)

7 ! mf
PS L (3.15)

11 ! mas
PS L (3.16)

P± =
1
2

(1 + " 0) (3.17)

O±
CB (x) = P± OCB (x) (3.18)

eAS is antisymmetric and " -traceless,

!
1
2

+ "
(3.19)

1 $ i " 5 (3.20)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC
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Interpolating operators for Chimera baryon

Analogous to the Lambda baryon in QCD, we construct the interpolating 

operator of a spin-1/2 Chimera baryon as

To compute the baryon two-point correlation function and extract the mass, analogous
to what we have done for the computation of the2-point correlator for mesons, it might
be su! cient to have a part of the operator in Eq. 4.2, where we choose the second term of
OCB,4,

Ok
CB, ! = ! i Q2 a

C Q1 b! bc" k ca
!

= iQ 2 d T (C! 5)! daQ1b! bc" k ca
!

= ! i (C! 5)"# ! ac! bdQ2a
" Q1b

# " k cd
! , (4.3)

and its Dirac conjugate is

Ok
CB, ! = ! i " ca

! ! cb! adQ2 d(C! 5)Q1 bT
. (4.4)

Using this interpolating operator, we Þnd the most generic propagator for the Chimera
baryon at positive Euclidean time t and vanishing momentum"p

"OCB (t)#OCB (0)#! # =
!

$x

Q2(t, "x)d
! ! da(C! 5)!" Q1(t, "x)b

" ! bc" (t, "x)ca
#

$ " (0)c! a!

#! ! c! b!
! a! d!

Q2(0)b!

! ! (C! 5)! ! " ! Q1(0)d!

" ! ,

=
!

$x

! da! bc! c! b!
! a! d!

S! (t, "x)ca,c! a!

#,#! S2
Q(t, "x)d,b!

! ,! ! (C! 5)!" S1
Q(t, "x)b,d!

" ," ! (C! 5)! ! " ! ,

=
!

$x

! da! bc! c! b!
! a! d!

S! (t, "x)ca,c! a!

#,#! Tr
"

S2
Q(t, "x)d,b!

#
(C! 5)S1

Q(t, "x)b,d!
(C! 5)T

$T
%

,(4.5)

where the fermion propagators are

SQ(t, "x)a,b
! ," = "Q(t, "x)a

! Q(0)b
" # and S! (t, "x)ab,cd

! ," = "" (t, "x)ab
! " (0)cd

" #. (4.6)

For convenience let us deÞne

Uac! =
&
! T S2

Q(t, "x)! T '
a,c! , and Dca! =

&
! T S1

Q(t, "x)! T '
c,a! . (4.7)

Then, we can rewrite the Chimera baryon

"OCB (t)#OCB (0)#! #=
!

$x

S! (t, "x)ca,c! a!

#,#! Tr
"

U(t, "x)a,c!
#

(C! 5)D (t, "x)c,a!
(C! 5)T

$T
%

,(4.8)

where the trace and transpose are for the spinor indices.
In order to make the color contraction easier, we take one step further by antisymmetriz-

ing the color indices of the fundamental propagatorsU and D as follows. For convenience
we Þrst deÞne the fundamental propagators by only leaving the color indices after taking
the contraction of the spinor indices of the trace term in Eq.4.8,

U!(t, "x)a,c!
D !(t, "x)c,a!

= Tr
"

U(t, "x)a,c!
#

(C! 5)D (t, "x)c,a!
(C! 5)T

$T
%

. (4.9)

Now, we perform the antisymmetrization,

SA,B
DQ (t, "x) = Tr

(
(eA

AS )T U!(t, "x)(eB
AS )D !(t, "x)T )

, (4.10)
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where the fermion propagators in given representations are

We also consider the parity projections in the nonrelativistic limit.

Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

m
f
0 = �0.6 (3.12)

� = 6.5, m
as
0 = �1.01, m

f
0 = �0.71 (3.13)

7 . m
f
PS L (3.14)

11 . m
as
PS L (3.15)

P± =
1

2
(1 + �0) (3.16)

O
±
CB(x) = P±OCB(x) (3.17)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

– 6 –

with

4.2 Chimera baryons

We consider the interpolating Þeld for a generic Chimera baryon of the form

O!
CB = D !"#$ ! ac! bdQi a

" Qj b
# " k cd

$ , (4.1)

where a, b, c, d are colour indexes andi, j, k are ßavor indexes. The tensorD is some
combination of gamma matrices which projects onto the desired spin state with! , " , #, $
the spinor indexes.

Analogous to a# baryon-type operator in QCD, we consider the operator which would
interpolate the Chimera baryon having the same quantum number of top-partner. We
particularly use OCB 4 in Eq. 2.11

! i (Q1 aQ2 b
C + Q2 a

C Q1 b)! bc" k ca
! = i

!
Q1 d T

C ! da(C#5)Q2 b
C + Q2 d T ! da(C#5)Q1 b

"
! bc" k ca

! .

(4.2)
To compute the baryon two-point correlation function and extract the mass, analogous

to what we have done for the computation of the2-point correlator for mesons, it might
be su! cient to have a part of the operator in Eq. 4.2, where we choose the second term of
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#

$ " (0)c! a!

#! ! c! b!
! a! d!

Q2(0)b!

! ! (C#5)! ! " ! Q1(0)d!

" ! ,

=
#

%x

! da! bc! c! b!
! a! d!

S! (t, %x)ca,c! a!

#,#! S2
Q(t, %x)d,b!

! ,! ! (C#5)!" S1
Q(t, %x)b,d!

" ," ! (C#5)! ! " ! ,

=
#

%x

! da! bc! c! b!
! a! d!

S! (t, %x)ca,c! a!

#,#! Tr
$

S2
Q(t, %x)d,b!

!
(C#5)S1

Q(t, %x)b,d!
(C#5)T

" T
%

,(4.5)

where the fermion propagators are

SQ(t, %x)a,b
! ," = "Q(t, %x)a

! Q(0)b
" # and S! (t, %x)ab,cd

! ," = "" (t, %x)ab
! " (0)cd

" #. (4.6)

For convenience let us deÞne

Uac! =
&
! T S2

Q(t, %x)! T '
a,c! , and Dca! =

&
! T S1

Q(t, %x)! T '
c,a! . (4.7)
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Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).

! ! 6.7 (3.6)

! ! 6.5 (3.7)

! ! 6.4 (3.8)

! c ! 6.7 (3.9)

! c ! 6.5 (3.10)

! = 6 .4 (3.11)

! ! 6.4 (3.12)

a mf
0 = " 0.6 (3.13)

! = 6 .5, a mas
0 = " 1.01, a mf

0 = " 0.71, T # L 3 = 48 # 243 (3.14)

7 ! mf
PS L (3.15)

11 ! mas
PS L (3.16)

P± =
1
2

(1 ± " 0) (3.17)

P+ =
1
2

(1 + " 0) (3.18)

O±
CB (x) = P± OCB (x) (3.19)

eAS is antisymmetric and " -traceless,

!
1
2

+ "
(3.20)

1 $ i " 5 (3.21)
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Results III: Chimera baryon
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Results IV: Masses of mesons & Chimera baryon 
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Preliminary

We considered spin-0 & 1 ßavored mesons: pseudoscalar(PS), vector(V), 
tensor(T), axial-vector(AV), axial-tensor(AT) & scalar(S).

Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS
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eAS is antisymmetric and ⌦-traceless,
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Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS
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CB (x) = P± OCB (x) (3.18)

eAS is antisymmetric and " -traceless,

!
1
2

+ "
(3.19)

3.2 (Rational) Hybrid Monte Carlo
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Summary & outlook

We have developed numerical techniques to simulate Sp(2N) lattice 

gauge theories coupled to fermions in the multiple representations.

The Þrst lattice studies of the VU model with the exact ßavor content required 

for CH & top-partial comp.: Sp(4) with Nf=2 F & nf=3 AS Dirac fermions. 

Weak coupling region: 

FV e!ects are under control:                     & 
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Chimera baryon (top partner): parity projection, smearing & variational method

To do list

Generate ensembles at various values of     ,       ,         and calculate the low-
lying spectra of composite states: mass dependence & lattice artifacts
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Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
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Compute the (low-lying) Dirac eigenvalues

Chirally broken or conformal? How light is the chimera baryon?

Finally, the Dirac operator for the 2-index antisymmetric representation D AS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).
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1
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O±
CB (x) = P± OCB (x) (3.18)

eAS is antisymmetric and " -traceless,

3.2 (Rational) Hybrid Monte Carlo
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3.3 Scale setting
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Backup I

From our previous studies of Nf=2 F Sp(4) & nf=3 AS Sp(4) we learned that 

1st order bulk phase transitions exist for              &              , respectively.

Uµ(x) = UF
µ (x) ! Sp(4) (3.2)

In order to construct the Dirac operator DAS for fermion Þelds ! ab in the 2-index
antisymmetric representation, we follow the prescription in [? ]. For Sp(2N ), we deÞne
an orthonormal basise(ab)

AS (with the multi-index (ab) running over ordered pairs with 1 "
a < b " 2N ) for the appropriate vector space of2N # 2N antisymmetric matrices. The
N (2N $ 1) $ 1 such matrices have the following non-vanishing entries. Forb = N + a and
2 " a " N

(e(ab)
AS )c,N+ c % $(e(ab)

AS )N+ c,c %

!
"

#

1&
2a (a! 1)

, for c < a,
! (a! 1)&
2a (a! 1)

, for c = a,
(3.3)

and for b '= N + a

(e(ab)
AS )cd %

1
&

2
(! ac! bd $ ! bc! ad) . (3.4)

The main di! erence compared to the case ofSU(N ) is that the base eAS is " -traceless,

satisfying " dc
$

e(ab)
AS

%

cd
= 0 . In the Sp(4) case, one can verify that the resulting5 non-

vanishing matrices satisfy the orthonormalisation conditionTr e(ab)
AS e(cd)

AS = $ ! (ab)( cd) , while

the matrix e(13)
AS vanishes identically. The explicit form of the antisymmetric link variables

UAS
µ (x) descends from the fundamental link variablesUµ(x), as

&
UAS
µ

'
(ab)( cd)

(x) % Tr
(
(e(ab)

AS )  Uµ(x)e(cd)
AS UT

µ (x)
)

, with a < b, c < d. (3.5)

Finally, the Dirac operator for the 2-index antisymmetric representation DAS is obtained
by replacing (Uµ)ab by (UAS

µ )(ab)( cd) and Q by ! in Eq. (??).
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03(2018)185Figure 19 . Plaquette susceptibilities ! , measured in HMC calculations with dynamical quarks,

for " = 6 .6 (top panel) and " = 6 .8 (bottom panel), as a function of the bare massam0, for three
values of the lattice size (see legend).

Figure 20 . Trajectories of plaquette values for dynamical-fermion calculations at" = 6 .9. Di! erent
colours represent various fermion masses, as reported in the legend.
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Finally, the Dirac operator for the 2-index antisymmetric representation D
AS

is obtained

by replacing (Uµ)ab by (UAS
µ )(ab)(cd) and Q by  in Eq. (??).

� . 6.7 (3.6)

� . 6.5 (3.7)

�
c
⇠ 6.7 (3.8)

�
c
⇠ 6.5 (3.9)

� = 6.4 (3.10)

� ⇠ 6.4 (3.11)

m
f
0 = �0.6 (3.12)

3.2 (Rational) Hybrid Monte Carlo

HMC + RHMC

3.3 Scale setting

Gradient flow method

4 Observables

4.1 Mesons

interpolating operators for spin-0 and spin-1 flavored mesons

4.2 Chimera baryons

We consider the interpolating field for a generic Chimera baryon of the form

O
↵
CB = D

↵���⌦ac⌦bdQ
i a
� Q

j b
�  

k cd
� , (4.1)

where a, b, c, d are colour indexes and i, j, k are flavor indexes. The tensor D is some

combination of gamma matrices which projects onto the desired spin state with ↵, �, �, �

the spinor indexes.

Analogous to a ⇤ baryon-type operator in QCD, we consider the operator which would

interpolate the Chimera baryon having the same quantum number of top-partner. We

particularly use OCB 4 in Eq. 2.11

� i(Q1 aQ
2 b
C +Q2 a

C Q
1 b)⌦bc 

k ca
↵ = i

⇣
Q

1 d T
C ⌦da(C�5)Q

2 b
C +Q

2 d T⌦da(C�
5)Q1 b

⌘
⌦bc 

k ca
↵ .

(4.2)
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