

The Techni-Pati-Salam model

Giacomo Cacciapaglia IP2I Lyon, France

G.C., S. Vatani, C. Zhang 1911.05454, 2005.12302 Lattice 2021 July 30

Why Higgs compositeness?

- A scalar field may be made
 of more fundamental fields
- o We have seen this in Nature: Low-energy QCD!
- Symmetries can be broken dynamically without generating hierarchies of scales!
- How to give mass to SM fermions? That is THE question! (And big challenge)

Sequestering QCD in Partial compositeness

 $\mathcal{G}_{\mathrm{TC}}$:

rep R

Q

SM:

EW

global : $\langle QQ \rangle \neq 0$

PNGB Higgs
DM?

rep R'

G.Ferretti, D.Karateev 1312.5330, 1604.06467

 χ

 $T' = QQ\chi$ or $Q\chi\chi$

colour + hypercharge

a) $\langle \chi \chi \rangle \neq 0$

coloured pNGBs di-boson

b) $\langle \chi \chi \rangle = 0$

light top partners from 't Hooft anomaly conditions?

	Real	Pseudo-Real	SU(5)/SO(5)) × SU(6)	/Sp(6)		
$Sp(2N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{ m HC} \geq 12$	$\frac{5(N_{\mathrm{HC}}+1)}{3}$	1/3	/	
$Sp(2N_{ m HC})$	$5 imes \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{ m HC} \geq 4$	$\frac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{ m HC}=4$	M5
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 \times \mathbf{Spin}$	$N_{ m HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	$\times SU(3)^2$	/SU(3)		
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=4$	<u>5</u> 3	1/3	$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	× SU(6)/	'SO(6)	an in the section of	Para de la companya
$Sp(2N_{ m HC})$	$4 imes \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{ m HC}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{ m HC}=11$	M9
	Complex	Real	$SU(4)^2/SU(4$) × SU(6)	/SO(6)		
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{ m HC}=10$	65 00	2/3	$N_{ m HC}=10$	M10
$SU(N_{ m HC})$	$4 imes(\mathbf{F},\overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	SU(4) ² /SU(4)	× SU(3)2	² /SU(3)		
$SU(N_{ m HC})$	$4 imes(\mathbf{F},\overline{\mathbf{F}})$	$3 imes({f A}_2,{\overline{f A}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{ m HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4 imes(\mathbf{F},\overline{\mathbf{F}})$	$3 imes (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/	
$SU(N_{ m HC})$	$4 imes ({f A}_2, {f \overline A}_2)$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=5$	4	2/3	/	3

Partially Unified Partial Compositeness (PUPC)

Planck scale

G.C., S.Vatani, C.Zhang 1911.05454, 2005.12302

Condensation scale

Usual low energy description of composite Higgs models

Standard Model

One of Ferretti models

Partially Unified Partial Compositeness (PUPC)

Planck scale

G.C., S.Vatani, C.Zhang 1911.05454, 2005.12302

Conformal window (large scaling dimensions)

One of Ferretti models + additional fermions

Condensation scale

Usual low energy description of composite Higgs models

One of Ferretti

models

Standard Model

Partially Unified Partial Compositeness (PUPC)

Planck scale

HC and SM gauge groups partially unified

Symmetry breaking by scalars

Conformal window (large scaling dimensions)

G.C., S. Vatani, C. Zhang 1911.05454, 2005.12302

> 4-fermion Ops generated!

One of Ferretti models + additional fermions

Condensation scale

Usual low energy description of composite Higgs models

Standard Model

One of Ferretti models

Extended Technicolor

 Mediator is a gauge boson from an extended gauge symmetry

50(N)TC

SU(N)TC

 Hard to embed spinorial irrep for TF or mediator

TF spectrum typically chiral (as the SM)

Sp(N)TC

Techni-Pati-Salam

- © SU(8)TPS x SU(2)R → SU(7) x U(1)
 splits leptons from quarks
- © SU(7) -> SU(4)_{TC} x SU(3)_C x U(1) splits techni-fermions from quarks
- @ SU(4)TC -> Sp(4)TC

Techni-Pati-Salam

	Field	Spin	$SU(8)_{\rm PS}$	$SU(2)_L$	$SU(2)_R$	#	Q_G
	Ω	1/2	8	2	1	3	1
	Υ	1/2	$\bar{8}$	1	2	3	-1
	[1]	1/2	$70 (= A_4)$	1	1	1	0
	N	1/2	1	1	1	3	0
The state of the s	Φ	0	8	1	2	1	1
	Θ	0	$28 (= A_2)$	1	1	2	2
	Δ_R	0	$56(= A_3)$	1	2	1	1
	Δ_L	0	$56(= A_3)$	2	1	1	1
	Ψ	0	63 (= Adj)	1	1	2	0

Quarks, leptons and techni-fermions PC fermions

 $\Phi \rightarrow \text{Breaks SU(8)} \times \text{SU(2)}_{R} \text{ to SU(7)} \times \text{U(1)}$

 $\Psi
ightarrow$ Breaks SU(7) to SU(4) x SU(3) x U(1)

 $\Theta \rightarrow \text{ Breaks SU(4) to Sp(4), U(1) x U(1) to U(1)y}$

Techni-Pali-Salam

Fermion sector:

1st Family	2nd Family	3rd Family
N^1	N^2	N^3
$\mathbf{\Omega}^{1} = \begin{pmatrix} \begin{pmatrix} L_{u}^{1} \\ u_{L}^{1} \\ v_{L}^{1} \end{pmatrix} & \begin{pmatrix} L_{d}^{1} \\ d_{L}^{1} \\ e_{L}^{1} \end{pmatrix} \end{pmatrix}$	$\Omega^2 = \begin{pmatrix} \begin{pmatrix} L_u^2 \\ u_L^2 \\ v_L^2 \end{pmatrix} & \begin{pmatrix} L_d^2 \\ d_L^2 \\ e_L^2 \end{pmatrix} \end{pmatrix}$	$\Omega^3 = \begin{pmatrix} \begin{pmatrix} L_u^3 \\ u_L^3 \\ v_L^3 \end{pmatrix} & \begin{pmatrix} L_d^3 \\ d_L^3 \\ e_L^3 \end{pmatrix} \end{pmatrix}$
$\Upsilon^{1} = \begin{pmatrix} \begin{pmatrix} U_d^1 \\ d_R^{1c} \\ e_R^{1c} \end{pmatrix} & \begin{pmatrix} D_u^1 \\ u_R^{1c} \\ v_R^{1c} \end{pmatrix}$	$\Upsilon^2 = \begin{pmatrix} \begin{pmatrix} U_d^2 \\ d_R^{2c} \\ e_R^{2c} \end{pmatrix} & \begin{pmatrix} D_u^2 \\ u_R^{2c} \\ v_R^{2c} \end{pmatrix} \end{pmatrix}$	$\Upsilon^3 = \begin{pmatrix} \begin{pmatrix} U_d^3 \\ d_R^{3c} \\ e_R^{3c} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} D_u^3 \\ u_R^{3c} \\ v_R^{3c} \end{pmatrix} \end{pmatrix}$
	$\Xi = \begin{pmatrix} \begin{bmatrix} U_u \\ \chi \\ B \end{bmatrix} & \begin{bmatrix} D_d \\ \tilde{\chi} \\ \tilde{B} \end{bmatrix} \end{pmatrix}$	
$B = [\rho](1, 1)_0 + [\eta](4, \overline{3})_{-1/2}$	$_{6}+[\omega](1,3)_{-1/3}, \ \tilde{B}=[\tilde{\rho}](1,1)_{0}$	$_{0}+[\tilde{\eta}](4,3)_{_{1/6}}+[\tilde{\omega}](\mathbf{1,\overline{3}})_{_{1/3}}$

Techni-Pati-Salam

Fermion sector: Sp(4) irreps

1st Family	2nd Family	3rd Family
N^1	N^2	N^3
$\mathbf{\Omega}^1 = \begin{pmatrix} \begin{pmatrix} L_u^1 \\ u_L^1 \\ v_L^1 \end{pmatrix} & \begin{pmatrix} L_d^1 \\ d_L^1 \\ e_L^1 \end{pmatrix} \end{pmatrix}$	$\Omega^2 = \begin{pmatrix} \begin{pmatrix} L_u^2 \\ u_L^2 \\ v_L^2 \end{pmatrix} & \begin{pmatrix} L_d^2 \\ d_L^2 \\ e_L^2 \end{pmatrix} \end{pmatrix}$	$\Omega^3 = \begin{pmatrix} L_u^3 \\ u_L^3 \\ v_L^3 \end{pmatrix} \begin{pmatrix} L_d^3 \\ d_L^3 \\ e_L^3 \end{pmatrix}$
$\Upsilon^{1} = \begin{pmatrix} \begin{pmatrix} U_{d}^{1} \\ d_{R}^{1c} \\ e_{R}^{1c} \end{pmatrix} \begin{pmatrix} D_{u}^{1} \\ u_{R}^{1c} \\ v_{R}^{1c} \end{pmatrix}$	$\Upsilon^2 = \begin{pmatrix} \begin{pmatrix} U_d^2 \\ d_R^{2c} \\ e_R^{2c} \end{pmatrix} \begin{pmatrix} D_u^2 \\ u_R^{2c} \\ v_R^{2c} \end{pmatrix}$	$\Upsilon^3 = \begin{pmatrix} \begin{pmatrix} U_d^3 \\ d_R^{3c} \\ e_R^{3c} \end{pmatrix} - \begin{pmatrix} D_u^3 \\ u_R^{3c} \\ v_R^{3c} \end{pmatrix}$
Lepton F	R R	Higgs components
	$+[\omega](1,3)_{-1/3}, \ \ \tilde{B}=[\tilde{\rho}](1,1)$	$_{0}+[\tilde{\eta}](4,3)_{_{1/6}}+[\tilde{\omega}](\mathbf{1,\overline{3}})_{_{1/3}}$

Inside or outside the conformal window: That is the question!

If SU(4) to Sp(4) broken at high scale, the theory with 12 light fundamental flavours is near the SD boundary.

Techni-Pati-Salam

Fermion sector: SU(4) irreps

1st Family	2nd Family	3rd Family
N^1	N^2	N^3
$\mathbf{\Omega}^1 = \begin{pmatrix} \begin{pmatrix} L_u^1 \\ u_L^1 \\ v_L^1 \end{pmatrix} & \begin{pmatrix} L_d^1 \\ d_L^1 \\ e_L^1 \end{pmatrix} \end{pmatrix}$	$\Omega^2 = \begin{pmatrix} \begin{pmatrix} L_u^2 \\ u_L^2 \\ v_L^2 \end{pmatrix} & \begin{pmatrix} L_d^2 \\ d_L^2 \\ e_L^2 \end{pmatrix} \end{pmatrix}$	$\Omega^3 = \begin{pmatrix} L_u^3 \\ u_L^3 \\ v_L^3 \end{pmatrix} \begin{pmatrix} L_d^3 \\ d_L^3 \\ e_L^3 \end{pmatrix}$
$\Upsilon^{1} = \begin{pmatrix} \begin{pmatrix} U_d^1 \\ d_R^{1c} \\ e_R^{1c} \end{pmatrix} \begin{pmatrix} D_u^1 \\ u_R^{1c} \\ v_R^{1c} \end{pmatrix}$	$\Upsilon^2 = \begin{pmatrix} \begin{pmatrix} U_d^2 \\ d_R^{2c} \\ e_R^{2c} \end{pmatrix} \begin{pmatrix} D_u^2 \\ u_R^{2c} \\ v_R^{2c} \end{pmatrix}$	$\Upsilon^3 = \begin{pmatrix} \begin{pmatrix} U_d^3 \\ d_R^{3c} \\ e_R^{3c} \end{pmatrix} \begin{pmatrix} D_u^3 \\ u_R^{3c} \\ v_R^{3c} \end{pmatrix}$
Ligh	$\Xi = \begin{pmatrix} \begin{bmatrix} U_u \\ \chi \\ B \end{bmatrix} & \begin{bmatrix} D_d \\ \tilde{\chi} \\ B \end{bmatrix} \end{pmatrix}$	Massless! (chiral)
$B = [\rho](1, 1)_0 + [\eta](4, \overline{3})_{-1/2}$	$+[\omega](1,3)_{-1/3}, \ \tilde{B}=[\tilde{\rho}](1,1)$	$_{0}+[\tilde{\eta}](4,3)_{_{1/6}}+[\tilde{\omega}](1,\overline{3})_{_{1/3}}$

Inside or outside the conformal window: That is the question!

Blue: 50(4) 10F + 3A

SD = Schwinger-Dyson PS = Pica-Sannino

If SU(4) to Sp(4) broken at <u>low scale</u>, the theory with <u>20 light</u> fundamental flavours is near the SD boundary.

Inside or outside the conformal window: That is the question!

If SU(4) to Sp., promit low scale, the theory with 20 light fundamental flavours is near the SD boundary.

Field	Spin	$SU(8)_{PS}$	$SU(2)_L$	$SU(2)_R$	#	Q_G
Ω	1/2	8	2	1	3	1
Υ	1/2	8	1	2	3	-1
Ξ	1/2	$70 (= A_4)$	1	1	1	0
N	1/2	1	1	1	3	0
Φ	0	8	1	2	1	1
Θ	0	${f 28} (={f A}_2)$	1	1	2	2
Δ_R	0	$56(= A_3)$	1	2	1	1
Δ_L	0	$56(= A_3)$	2	1	1	1
Ψ	0	$63(=\mathbf{Adj})$	1	1	2	0

$$\mathcal{L}_{Y} = -\frac{1}{2}\mu_{N}^{a}N^{a}N^{a} - \frac{1}{2}\mu_{\Xi}\Xi\Xi - \frac{1}{2}\lambda_{\Psi}\Xi\Psi\Xi - \left(\lambda_{\Phi}^{ab}\Upsilon^{a}\Phi N^{b}\right) + \lambda_{\Theta L}^{a}\Omega^{a}\Theta^{*}\Omega^{a} + \lambda_{\Theta R}^{a}\Upsilon^{a}\Theta\Upsilon^{a} + \lambda_{\Delta}^{a}\Upsilon^{a}\Delta^{*}\Xi + \text{h.c.}\right),$$

TPS gauge bosons can give mass to one generation!

Field	Spin	$SU(8)_{PS}$	$SU(2)_L$	$SU(2)_R$	#	Q_G
Ω	1/2	8	2	1	3	1
Υ	1/2	8	1	2	3	-1
[1]	1/2	$70 (= A_4)$	1	1	1	0
N	1/2	1	1	1	3	0
Φ	0	8	1	2	1	1
Θ	0	${f 28} (={f A}_2)$	1	1	2	2
Δ_R	0	$56(= A_3)$	1	2	1	1
Δ_L	0	$56(= A_3)$	2	1	1	1
Ψ	0	63 (= Adj)	1	1	2	0

$$\mathcal{L}_{Y} = -\frac{1}{2}\mu_{N}^{a}N^{a}N^{a} - \frac{1}{2}\mu_{\Xi}\Xi\Xi - \frac{1}{2}\lambda_{\Psi}\Xi\Psi\Xi - \left(\lambda_{\Phi}^{ab}\Upsilon^{a}\Phi N^{b}\right) + \lambda_{\Theta L}^{a}\Omega^{a}\Theta^{*}\Omega^{a} + \lambda_{\Theta R}^{a}\Upsilon^{a}\Theta\Upsilon^{a} + \lambda_{\Delta}^{a}\Upsilon^{a}\Delta^{*}\Xi + \text{h.c.}\right), - \left(\lambda_{\Theta L}^{kab}\Omega^{a}\Theta_{k}^{*}\Omega^{b} + \lambda_{\Theta R}^{kab}\Upsilon^{a}\Theta_{k}\Upsilon^{b} + \text{h.c.}\right) - \frac{1}{2}\lambda_{\Psi}^{k}\Xi\Psi_{k}\Xi.$$

- TPS gauge bosons can give mass to one generation!
- Adding a second copy of scalars give mass to second generation!

Field	Spin	$SU(8)_{PS}$	$SU(2)_L$	$SU(2)_R$	#	Q_G
Ω	1/2	8	2	1	3	1
Υ	1/2	8	1	2	3	-1
[1]	1/2	$70 (= A_4)$	1	1	1	0
N	1/2	1	1	1	3	0
Φ	0	8	1	2	1	1
Θ	0	${f 28} (={f A}_2)$	1	1	2	2
Δ_R	0	$56(= A_3)$	1	2	1	1
Δ_L	0	$56(= A_3)$	2	1	1	1
Ψ	0	$63 (= \mathbf{Adj})$	1	1	2	0

$$\mathcal{L}_{Y} = -\frac{1}{2}\mu_{N}^{a}N^{a}N^{a} - \frac{1}{2}\mu_{\Xi}\Xi\Xi - \frac{1}{2}\lambda_{\Psi}\Xi\Psi\Xi - \left(\lambda_{\Phi}^{ab}\Upsilon^{a}\Phi N^{b}\right) + \lambda_{\Theta L}^{a}\Omega^{a}\Theta^{*}\Omega^{a} + \lambda_{\Theta R}^{a}\Upsilon^{a}\Theta\Upsilon^{a} + \lambda_{\Delta}^{a}\Upsilon^{a}\Delta^{*}\Xi + \text{h.c.}\right), \\ - \left(\lambda_{\Theta L}^{kab}\Omega^{a}\Theta_{k}^{*}\Omega^{b} + \lambda_{\Theta R}^{kab}\Upsilon^{a}\Theta_{k}\Upsilon^{b} + \text{h.c.}\right) \\ - \frac{1}{2}\lambda_{\Psi}^{k}\Xi\Psi_{k}\Xi. \\ -\lambda_{\Delta L}^{a}\Omega^{a}\Delta_{L}\Xi + \text{h.c.}$$

- TPS gauge bosons can give mass to one generation!
- Adding a second copy of scalars give mass to second generation!
- o Della's give mass to the first generation!

Field	Spin	$SU(8)_{PS}$	$SU(2)_L$	$SU(2)_R$	#	Q_G
Ω	1/2	8	2	1	3	1
Υ	1/2	8	1	2	3	-1
[I]	1/2	$70 (= A_4)$	1	1	1	0
N	1/2	1	1	1	3	0
Φ	0	8	1	2	1	1
Θ	0	$28 (= A_2)$	1	1	2	2
Δ_R	0	$56(= A_3)$	1	2	1	1
Δ_L		FC(A)	2			ation visas
Ψ	0	$63 (= \mathbf{Adj})$	1	1	2	0

$$\mathcal{L}_{Y} = -\frac{1}{2}\mu_{N}^{a}N^{a}N^{a} - \frac{1}{2}\mu_{\Xi}\Xi\Xi - \frac{1}{2}\lambda_{\Psi}\Xi\Psi\Xi - \left(\lambda_{\Phi}^{ab}\Upsilon^{a}\Phi N^{b}\right) + \lambda_{\Theta L}^{a}\Omega^{a}\Theta^{*}\Omega^{a} + \lambda_{\Theta R}^{a}\Upsilon^{a}\Theta\Upsilon^{a} + \lambda_{\Delta}^{a}\Upsilon^{a}\Delta^{*}\Xi + \text{h.c.}\right), - \left(\lambda_{\Theta L}^{kab}\Omega^{a}\Theta_{k}^{*}\Omega^{b} + \lambda_{\Theta R}^{kab}\Upsilon^{a}\Theta_{k}\Upsilon^{b} + \text{h.c.}\right) - \frac{1}{2}\lambda_{\Psi}^{k}\Xi\Psi_{k}\Xi.$$

- o TPS gauge bosons ca generation!
- Adding a second cop to second generation
- o ... or loop induced!

Lattice wishlist

- o Is Sp(4) with 6F + 3A conformal?
- If yes, what are the chimera baryon anomalous dimensions? [This could rule out the scenario]
- o Is SU(4) with 10F + 3A conformal?
- If yes, what are the chimera baryon anomalous dimensions? [This could rule out the low SU(4) breaking scenario]
- Dow energy spectrum and form-factors of Sp(4) with 2F+3A or 3F+3A.

Neutrino masses

 Can be generated by an inverse see-saw mechanism (naturally built-in)

$$\mathcal{L}_{\nu} = -\frac{1}{2} \begin{pmatrix} \nu_{L} & \nu_{R}^{c} & N & \rho & \tilde{\rho} \end{pmatrix} \begin{pmatrix} 0 & \mu_{\nu} & 0 & 0 & 0 \\ \mu_{\nu} & 0 & \mu_{\Phi} & 0 & 0 \\ 0 & \mu_{\Phi} & \mu_{N} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu_{0} \\ 0 & 0 & 0 & \mu_{0} & 0 \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \nu_{R}^{c} \\ N \\ \rho \\ \tilde{\rho} \end{pmatrix} + \text{h.c.}$$

A Dark Matter candidate from baryon number

Baryon number is conserved by the Yukawa interactions (and scalar VEVs)

	Glob	oal cha	rges	
	Fields	B	L	H
	SM quarks	1/3	0	0
	SM leptons	0	1	0
	L^p	0	0	1/2
	U_d^p, D_u^p	0	0	-1/2
	U_t	-1/2	1/2	1/2
ı	χ , ω	-1/6	1/2	0
ı	η	1/6	1/2	-1/2
1	ho	1/2	1/2	-1
	N^p	0	0	0
	v_{PS}^{Φ}	0	1	0
	$v_{ ext{EHC}}^{\Psi}$	0	0	0
	$v_{\mathrm{CHC}}^{\Theta}$	0	0	1

Assuming asymmetric production:

FIG. 6: Points saturating the DM relic density in the M_{ρ} vs. $M_{\chi}-M_{\rho}$ parameter space. The solid lines correspond to $T_*=246~{\rm GeV}$ (black), $T_*=100~{\rm GeV}$ (red) and $T_*=500~{\rm GeV}$ (blue).