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Introduction

Composite Higgs models

The identification of the Higgs as a pseudo–NG
boson emerging from the breaking of a global
symmetry offers a possible solution to the
Naturalness problem.

Such symmetry describes the flavor structure of
a new strongly–interacting sector, whose
fermions eventually confine into light bound
states, including the Higgs boson.

Strongly–interacting dynamics require a lattice
study.
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Lattice setup

A flexible environment for simulating these theories is
offered by the libraries Grid and Hadrons (multiple
representations, Nc = 2, 3, 4)

A promising model is a SU(4) gauge theory with five
fermions in the 6 two-index anti–symmetric and three
in the fundamental and anti-fundamental
representations. (Ferretti 2014)

Starting from Del Debbio, Panero et al (2019) we
simulate two fundamental and two sextet Dirac
fermions in a SU(4) gauge group, a simplification of
the Ferretti–model first explored by (Ayyar et al.
2017).

G

H
=

SU(5) × SU(3) × SU(3)′ × U(1)X × U(1)′

SO(5) × SU(3)c × U(1)X

(
SU(5)

SO(5)

) × (
SU(3) × SU(3)′

SU(3)c

) × (
U(1)′ × U(1)X

U(1)X

) .
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Lattice setup

Volume 163 × 32

β amfund am2AS Accep. Plaq. cnfg |λ4| |λ6|

Z0 10 −0.55 −0.55 89% 0.54977(9) 400 0.06990(36) 0.22517(53)

. . . .

. . . .
A1 11 −0.45 −0.45 74% 0.60891(27) 216 0.0365(9) 0.1794(9)

A2 11 −0.46 −0.45 85% 0.60930(25) 633 0.0273(12) 0.1768(9)

A3 11 −0.47 −0.45 85% 0.60942(26) 225 0.0165(10) 0.1769(9)

We perform HMC simulations by using Wilson
fermions withO(a) clover improvement term on
163 × 32 to 323 × 64 lattices

A – runs simulate similar values explored in (Ayyar et
al. 2017).
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Spectral densities from lattice correlators

Spectral reconstruction

We reconstruct finite–volume smeared spectral densities from lattice correlators measured on our ensembles by using a variation of the Backus–Gilbert method.

Finite–volume spectral densities can be smeared from δ–functions to regular functions

∆σ (E, E? ) with smearing radius σ

ρ̂(E? ) =

∫ ∞
0

dE ∆σ (E, E? ) ρ(E)

We span a smearing kernel with the same functions encoded in the correlators c(t)

c(t) =

∫ ∞
0

dE ρ(E) e−tE
, ∆̄σ (E?, E) =

tmax∑
t=0

gt e−(t+1)E

Provided we know the gt we can compute the smeared spectral density as

ρ̂(E? ) =

tmax∑
t=0

gt c(t + 1) =

∫ ∞
0

dE ∆̄σ (E?, E) ρ(E)

The coefficients can be found by minimising an appropriate functional W [g]

ρ(E) =
∑

n

wnδ(E − En ) −→
∑

n

wn ∆σ (E, En )
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Spectral densities from lattice correlators

Spectral reconstruction

W [g] = λ A[g] + (1− λ) B[g]

We use the functional A[g] introduced in (Hansen, Lupo, Tantalo
2019) measuring the difference between the reconstructed and the
exact kernel

A[g] =

∫ ∞
0

dE |∆σ(E?, E)− ∆̄σ(E?, E)|2

The other functional prevents large error propagations from c(t)
through the coefficients gt which can beO(1020)

B[g] = gT Cov g , ρ̂(E?) =

tmax∑
t=0

gt c(t + 1)

The shape of the smearing kernel, its width σ and the trade–off
parameter λ are inputs of the algorithm.
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Spectral densities of SU(4)

Extracting the ground state

A first application: reconstructing the ground state of
the Pseudoscalar–Pseudoscalar channel in a given
representation with16 data points (T=32)

Results are compatible with a standard effective mass
calculation at large time separations

Results are stable by varying the smearing radius σ.
Smaller radii can be achieved by increasing T
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Spectral densities of SU(4)

Pseudoscalar channel

As a smearing kernel, we use a regularised step function θσ (E − E? )

ρ(E) =
∑

n wnδ(E − En ) =⇒ ρ̃σ (E) =
∑

n wnθσ (E − En )

→ we should see a step at each energy level

Values for E0 used for normalisations are obtained by effective mass plots.

σ must be small enough to resolve different energies
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Spectral densities of SU(4)

Pseudoscalar channel

From the correlators we can also fit the first coefficients wn in

ρ̃σ (E) =
∑

n

wnθσ (E − E? )

With fits results for wn and En we can plot the smeared spectral density we would obtain

from them: w̃0 θσ (E − Ẽ0 ) + w̃1 θσ (E − Ẽ1 )
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Spectral densities of SU(4)

Vector channel

We computed the spectral density of the vector channel, smeared with a

θσ (E − E? ) –kernel

E0 is the value obtained from an effective mass plot in this channel The other vertical bands are the finite–volume spectrum of two free particle

with mass Mπ (the ground state of the pseudoscalar channel).
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Conclusions

In our preliminary results, the spectral reconstruction offers a

complementary approach which we found to be compatible with other

standard methods, matching the expected behaviour also for the first

excited states

The results shown in this work are obtained from only 16 datapoints.

As we increase the quality of the data and we explore lattices with larger

time extents, we aim to gain more insight:

Quantitative predictions beyond the ground state

More challanging data: lighter masses, scalar channel.
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