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topics of the talk:


• two -functions, defined on the gradient flow, will be discussed and tested in the ten-flavor model


• the gradient flow on the gauge and fermion fields can be viewed in the framework of renormalization group 
transformations  


• step -function in finite physical volume and the derivative -function,  (infinite physical volume), 
complement each other in model studies 


• the derivative beta function  makes contact with Harlander-Neumann infinite volume 3-loop 
expansion 


• contact with HN 3-loop was the goal of the original lattice study of   when LatHC first tested it in 
p-regime of massless fermions  1711.04833 ,

β

β β β = t ⋅ dg2/dt

β = t ⋅ dg2/dt

β = t ⋅ dg2/dt
various tests in 1910.06408  Anna H.,Oliver W. and in 1912.07653   LatHC

1802.07897 1806.01385 
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L/a

3/2·L/a

step = 3/2
c=1/3 aspect ratio

c=1/3 aspect ratio kept

FμνFμν FμνFμν

gradient flow  
footprint

gradient flow 
 footprint

at fixed c and fixed step: L/a  → infinity  (a -> 0 continuum limit)

FμνFμν operator measured at gradient flow time t defines the 
renormalized gauge coupling g(t) which scales with 
gradient flow time t, or equivalently, with the physical 
scale L  at fixed aspect ratio c in the continuum limit

operator measured at gradient flow time t 
defines the renormalized gauge coupling g(t) 

WilsonflowSymanzikactionCloveroperator defines the scheme: WSC   
(SSS, SSC, WSS schemes will also be used)

I. step -function on gradient flow in finite physical volume   LatHC 2012  β 1208.1051 [hep-lat]

anti-periodic fermions in the scheme, not SF  
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• the derivative beta function  makes contact with Harlander-Neumann 3-loop expansion 
(infinite volume). A potential application is the QCD coupling  at the Z-pole (Holland’s talk)


• it is used here to study the ten-flavor model


• two different ways to take continuum limit to infinite volume:

β = t ⋅ dg2/dt
αs

II. derivative  -function on gradient flow (infinite physical volume)   β

large L/a 

FμνFμν

L/a
gradient flow fixed footprint

FμνFμν

β = t ⋅ dg2/dt β = t ⋅ dg2/dt

fixed a2/t, a2/L2 → 0

gradient flow fixed footprint    second stepa2/t → 0

or, at fixed c,  
     second step

a2/L2 → 0
c → 0

1711.04833  LatHC

(1)

(2)

also tested in 1910.06408  by Anna H. and O. W.;  and LatHC in  1912.07653 

 is new scheme

provides consistency check 
βc(g2(t))
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flavor system exhibits a fast running β function close to the
perturbative 1-loop prediction, whereas for Nf ¼ 12 our
step-scaling calculation shows that the β function is small
in magnitude and identifies an infrared fixed point (IRFP)
in the range 5.2 ≤ g2c ≤ 6.4 using the c ¼ 0.250 renorm-
alization scheme.
In this work we present a detailed analysis of our step-

scaling calculation for ten fundamental flavors. Compared
to our results published in Refs. [14,15], we performed
additional simulations at stronger bare couplings and added
further volumes to improve the infinite volume continuum
limit extrapolation. The additional simulations allowed
us to increase the explored coupling range for c ¼ 0.300
from g2c ≈ 6.5 in Refs. [14,15] to g2c ≳ 11. At that strong
coupling we also discovered previously unaccounted lattice
artifacts. In an accompanying paper we discuss that
gradient flow on coarse configurations can promote dis-
locations to instantonlike objects. This introduces a non-
perturbative lattice artifact to the step-scaling beta function
which leads to incorrect continuum limit extrapolations
[25]. We find that the perturbatively preferable Symanzik
and Zeuthen flows introduce many more of these artifacts.
In order to minimize this artifact, we choose Wilson flow as
our preferred analysis.
In Fig. 1 we present our final result of the continuum

limit extrapolated GF step-scaling β function in the
renormalization schemes c ¼ 0.300, 0.275, and 0.250.
Our predictions are labeled “MDWF” (for Möbius domain
wall fermions) and shown by green bands. For the c ¼
0.300 scheme we also show the nonperturbative lattice
determinations by Chiu (blue symbols) [26–28] and LatHC
(gray band) [21,29,30].1 In addition we display by the
yellow/orange/pink/purple/red lines the MS perturbative
predictions at 1–5-loop order [31–34].
Comparing the different nonperturbative lattice predic-

tions in the c ¼ 0.300 scheme, we find that our result is in
perfect agreement at weak coupling (g2c ≲ 5.8) with the
findings by Chiu and sits just below LatHC’s result in the
range 5.0≲ g2c ≲ 8. At present only our calculation has
reached the 8.0≲ g2c ≲ 11.0 range where we observe a
down-turn of the β function pointing to a possible IRFP
around g2c ∼ 13. Our nonperturbative results suggest that
Nf ¼ 10 is likely conformal.
The bottom two panels of Fig. 1 show our continuum

limit predictions in the c ¼ 0.275 and 0.250 schemes. The
results reveal that the GF step-scaling β-function exhibits a
dependence on the renormalization scheme parameter c.
However, cutoff effects on the finite volume step-scaling
function are more severe at smaller c. Unfortunately, our
available data set does not allow to rigorously scrutinize our
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FIG. 1. Our final results for GF step-scaling function for
SU(3) with ten fundamental flavors using the renormalization
schemes c ¼ 0.300, 0.275, and 0.250 (from top to bottom).
The green bands show our result based on domain wall
fermions in comparison to perturbative predictions (yellow/
orange/pink/purple/red) lines [31–34] and other lattice deter-
minations [21,26–30] in the c ¼ 0.300 scheme. Lattice correc-
tions due to small flow time in the c ¼ 0.250 scheme could be
significant, affecting the continuum limit shown on the last
panel.

1We estimate the values of the LatHC result (gray band) for
s ¼ 2 based on Fig. 5 of Ref. [30] as the numerical values are not
yet published. The blue data points are from private communi-
cation with T.-W. Chiu and from Ref. [28].
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Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ

16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].
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Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ

16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].
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Boulder-BU collaboration

• nf = 10  s=2 step beta function


• tension with 2018-2019 LatHC results?


• Symanzik improved gauge action


• massless Möbius Domain Wall fermions 


• tree-improved WSS gradient flow scheme


• three aspect ratios c=0.25, c=0.275, c=0.30


• largest volume L=32


• gauge coupling extended to 


• c=0.25,0.275 results strongly suggest IRFP?


• consistency with 4+6 composite Higgs model?

g2 ≈ 11

IRFP ?

2004.00754

IRFP ?
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flavor system exhibits a fast running β function close to the
perturbative 1-loop prediction, whereas for Nf ¼ 12 our
step-scaling calculation shows that the β function is small
in magnitude and identifies an infrared fixed point (IRFP)
in the range 5.2 ≤ g2c ≤ 6.4 using the c ¼ 0.250 renorm-
alization scheme.
In this work we present a detailed analysis of our step-

scaling calculation for ten fundamental flavors. Compared
to our results published in Refs. [14,15], we performed
additional simulations at stronger bare couplings and added
further volumes to improve the infinite volume continuum
limit extrapolation. The additional simulations allowed
us to increase the explored coupling range for c ¼ 0.300
from g2c ≈ 6.5 in Refs. [14,15] to g2c ≳ 11. At that strong
coupling we also discovered previously unaccounted lattice
artifacts. In an accompanying paper we discuss that
gradient flow on coarse configurations can promote dis-
locations to instantonlike objects. This introduces a non-
perturbative lattice artifact to the step-scaling beta function
which leads to incorrect continuum limit extrapolations
[25]. We find that the perturbatively preferable Symanzik
and Zeuthen flows introduce many more of these artifacts.
In order to minimize this artifact, we choose Wilson flow as
our preferred analysis.
In Fig. 1 we present our final result of the continuum

limit extrapolated GF step-scaling β function in the
renormalization schemes c ¼ 0.300, 0.275, and 0.250.
Our predictions are labeled “MDWF” (for Möbius domain
wall fermions) and shown by green bands. For the c ¼
0.300 scheme we also show the nonperturbative lattice
determinations by Chiu (blue symbols) [26–28] and LatHC
(gray band) [21,29,30].1 In addition we display by the
yellow/orange/pink/purple/red lines the MS perturbative
predictions at 1–5-loop order [31–34].
Comparing the different nonperturbative lattice predic-

tions in the c ¼ 0.300 scheme, we find that our result is in
perfect agreement at weak coupling (g2c ≲ 5.8) with the
findings by Chiu and sits just below LatHC’s result in the
range 5.0≲ g2c ≲ 8. At present only our calculation has
reached the 8.0≲ g2c ≲ 11.0 range where we observe a
down-turn of the β function pointing to a possible IRFP
around g2c ∼ 13. Our nonperturbative results suggest that
Nf ¼ 10 is likely conformal.
The bottom two panels of Fig. 1 show our continuum

limit predictions in the c ¼ 0.275 and 0.250 schemes. The
results reveal that the GF step-scaling β-function exhibits a
dependence on the renormalization scheme parameter c.
However, cutoff effects on the finite volume step-scaling
function are more severe at smaller c. Unfortunately, our
available data set does not allow to rigorously scrutinize our

0 2 4 6 8 10 12

g c
2

-0.15

0.05

0.25

0.45

0.65

0.85
c,

s
(g

c2
)

Nf=10, c=0.3, s=2

MDWF
Chiu 2016
Chiu 2018 linear
LatHC 2018
1-loop
2-loop
3-loop
4-loop
5-loop

0 2 4 6 8 10 12

g c
2

-0.15

0.05

0.25

0.45

0.65

0.85

c,
s
(g

c2
)

Nf=10, c=0.275, s=2

MDWF
1-loop
2-loop
3-loop
4-loop
5-loop

0 2 4 6 8 10 12

g c
2

-0.15

0.05

0.25

0.45

0.65

0.85

c,
s
(g

c2
)

Nf=10, c=0.25, s=2

MDWF
1-loop
2-loop
3-loop
4-loop
5-loop

FIG. 1. Our final results for GF step-scaling function for
SU(3) with ten fundamental flavors using the renormalization
schemes c ¼ 0.300, 0.275, and 0.250 (from top to bottom).
The green bands show our result based on domain wall
fermions in comparison to perturbative predictions (yellow/
orange/pink/purple/red) lines [31–34] and other lattice deter-
minations [21,26–30] in the c ¼ 0.300 scheme. Lattice correc-
tions due to small flow time in the c ¼ 0.250 scheme could be
significant, affecting the continuum limit shown on the last
panel.

1We estimate the values of the LatHC result (gray band) for
s ¼ 2 based on Fig. 5 of Ref. [30] as the numerical values are not
yet published. The blue data points are from private communi-
cation with T.-W. Chiu and from Ref. [28].
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Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ

16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].
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Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ

16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].
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• nf = 10  s=2 step beta function


• tension with 2018-2019 LatHC results?


• Symanzik improved gauge action


• massless Möbius Domain Wall fermions 


• tree-improved WSS gradient flow scheme


• three aspect ratios c=0.25, c=0.275, c=0.30


• largest volume L=32


• gauge coupling extended to 


• c=0.25,0.275 results strongly suggest IRFP?


• consistency with 4+6 composite Higgs model?

g2 ≈ 11

IRFP ?

2004.00754

• reading                          was puzzling


• the fitting method was puzzling


• history of moving the IRFP to stronger coupling when 
LatHC could not reproduce it

2004.00754

IRFP ?
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and without tree-level normalization and refer to the
two analysis by nWS and WS, respectively. Our results
show that for weaker couplings (g2c ≲ 6.0) tree-level
normalization clearly removes discretization effects but
also for stronger coupling leads to a prediction of the
continuum limit step-scaling function βc;sðg2cÞ which is
consistent with the WS determination without tree-level
normalization. We therefore present our results for the ten
flavor step-scaling function in Figs. 3–5 showing the
nWS analysis on the left and the and WS analysis on
the right.

Our analysis proceeds in the following steps:
(i) We calculate the discrete βc;sðg2c;LÞ function defined

in Eq. (3) for our five different volume pairs with
scale change s ¼ 2. The outcome is shown by the
colored data symbols in the top panels of Figs. 3–5.
Since simulations at different bare coupling β are
statistically independent, also these data points are
statistically independent.

(ii) Next we interpolate the data for each pair of lattice
volumes using a polynomial form motivated by the
perturbative expansion
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FIG. 5. Discrete step-scaling β-function in the c ¼ 0.250 gradient flow scheme for our preferred nWS (left) and WS (right) data sets.
The symbols in the top row show our results for the finite volume discrete β function with scale change s ¼ 2. The dashed lines with
shaded error bands in the same color of the data points show the interpolating fits. We take the continuum limit performing a linear fit
(black line with gray error band) in a2=L2 to the three largest volume pairs (filled symbols). The p-values of the continuum extrapolation
fit is shown in the plots in the second row. Further details of the continuum extrapolation at selected g2c values are presented in the small
panels at the bottom where the legend lists the extrapolated values in the continuum limit with p-values in brackets. Only statistical
errors are shown.
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flavor system exhibits a fast running β function close to the
perturbative 1-loop prediction, whereas for Nf ¼ 12 our
step-scaling calculation shows that the β function is small
in magnitude and identifies an infrared fixed point (IRFP)
in the range 5.2 ≤ g2c ≤ 6.4 using the c ¼ 0.250 renorm-
alization scheme.
In this work we present a detailed analysis of our step-

scaling calculation for ten fundamental flavors. Compared
to our results published in Refs. [14,15], we performed
additional simulations at stronger bare couplings and added
further volumes to improve the infinite volume continuum
limit extrapolation. The additional simulations allowed
us to increase the explored coupling range for c ¼ 0.300
from g2c ≈ 6.5 in Refs. [14,15] to g2c ≳ 11. At that strong
coupling we also discovered previously unaccounted lattice
artifacts. In an accompanying paper we discuss that
gradient flow on coarse configurations can promote dis-
locations to instantonlike objects. This introduces a non-
perturbative lattice artifact to the step-scaling beta function
which leads to incorrect continuum limit extrapolations
[25]. We find that the perturbatively preferable Symanzik
and Zeuthen flows introduce many more of these artifacts.
In order to minimize this artifact, we choose Wilson flow as
our preferred analysis.
In Fig. 1 we present our final result of the continuum

limit extrapolated GF step-scaling β function in the
renormalization schemes c ¼ 0.300, 0.275, and 0.250.
Our predictions are labeled “MDWF” (for Möbius domain
wall fermions) and shown by green bands. For the c ¼
0.300 scheme we also show the nonperturbative lattice
determinations by Chiu (blue symbols) [26–28] and LatHC
(gray band) [21,29,30].1 In addition we display by the
yellow/orange/pink/purple/red lines the MS perturbative
predictions at 1–5-loop order [31–34].
Comparing the different nonperturbative lattice predic-

tions in the c ¼ 0.300 scheme, we find that our result is in
perfect agreement at weak coupling (g2c ≲ 5.8) with the
findings by Chiu and sits just below LatHC’s result in the
range 5.0≲ g2c ≲ 8. At present only our calculation has
reached the 8.0≲ g2c ≲ 11.0 range where we observe a
down-turn of the β function pointing to a possible IRFP
around g2c ∼ 13. Our nonperturbative results suggest that
Nf ¼ 10 is likely conformal.
The bottom two panels of Fig. 1 show our continuum

limit predictions in the c ¼ 0.275 and 0.250 schemes. The
results reveal that the GF step-scaling β-function exhibits a
dependence on the renormalization scheme parameter c.
However, cutoff effects on the finite volume step-scaling
function are more severe at smaller c. Unfortunately, our
available data set does not allow to rigorously scrutinize our
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FIG. 1. Our final results for GF step-scaling function for
SU(3) with ten fundamental flavors using the renormalization
schemes c ¼ 0.300, 0.275, and 0.250 (from top to bottom).
The green bands show our result based on domain wall
fermions in comparison to perturbative predictions (yellow/
orange/pink/purple/red) lines [31–34] and other lattice deter-
minations [21,26–30] in the c ¼ 0.300 scheme. Lattice correc-
tions due to small flow time in the c ¼ 0.250 scheme could be
significant, affecting the continuum limit shown on the last
panel.

1We estimate the values of the LatHC result (gray band) for
s ¼ 2 based on Fig. 5 of Ref. [30] as the numerical values are not
yet published. The blue data points are from private communi-
cation with T.-W. Chiu and from Ref. [28].
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Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ

16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].

A. HASENFRATZ, C. REBBI, and O. WITZEL PHYS. REV. D 101, 114508 (2020)

114508-12

Ls ¼ 32 are about five times more expensive than Ls ¼ 16
simulations, all Ls ¼ 32 ensembles have considerably less
statistics and consequently larger statistical uncertainties.

Additional aspects of simulations with Ls ¼ 32 are pre-
sented in Ref. [25].

VI. CONCLUSION

Using gauge field configurations generated with stout-
smeared Möbius domain wall fermions and Symanzik
gauge action, we have calculated the gradient flow step-
scaling function for SU(3) with ten dynamical flavors. Our
simulations explore the range of strong coupling so far not
investigated in lattice calculations. Pursuing simulations in
the range for g2c ≳ 8.0, we observe that the gradient flow
occasionally promotes vacuum fluctuations (dislocations)
to instantonlike objects. This is a lattice artifact that has not
been described previously. The effect is more pronounced
for some gradient flows than for others but always causes
the gradient flow coupling to increase and run faster. Since
Wilson flow does the best job in suppressing such dis-
locations compared to Zeuthen or Symanzik flow, we
choose Wilson flow with Symanzik operator for our
preferred analysis. Further we consider performing our
analysis with and without tree-level normalization to
reduce cutoff effects. Although justified only in the weak
coupling limit, we find that our result with tree-level
normalization is consistent to our unimproved result
throughout the full range covered in g2c. Hence we quote,
as shown in Fig. 10, the envelope covering our nWS and
WS prediction as our final result.7 The two determinations
mostly overlap with each other. Thus this choice may only
account for some of the systematic effects. Using alter-
native flow/operator combinations to obtain a better esti-
mate of systematic effects is however troublesome because
of lattice artifacts induced by nonzero topological charge in
the strong coupling regime. Discretization effects of some
flow-operator combinations also grow substantially at
strong coupling. Moreover, we studied the effect due to
the finite extent of Ls which results in a small chiral
symmetry breaking. Increasing Ls from 16 to 32 at β ¼
4.05we observe changes in g2cðL; βÞwhich however mostly
cancel in the difference βc;sðg2c;L; βÞ. In relation to our
preferred analysis based on Ls ¼ 16 ensembles, the Ls ¼
32 data are largely consistent with the interpolated Ls ¼ 16
result. This suggests that the overall effect due to the finite
value of Ls is negligible compared to other effects. Another
possible systematic effect may enter when predicting the
continuum limit. We extrapolate the three largest volume
pairs using a linear Ansatz in ða=LÞ2. This form is
motivated perturbatively because for our actions the irrel-
evant operators enter at Oða2Þ at the Gaussian FP. At a
strongly coupled IRFP, the leading irrelevant exponent
could be different. We are however not able to resolve a

TABLE II. Renormalized coupling g2cðL; βÞ and βc;sðg2c;L; βÞ
determined at β ¼ 4.05 for our preferred WS analysis using
ensembles with Ls ¼ 16 and 32.

Ls c L g2cðL; βÞ s · L g2cðsL; βÞ βc;sðg2c;L; βÞ

16 0.250 10 11.266(47) 20 9.471(27) −1.295ð39Þ
32 0.250 10 11.658(56) 20 9.739(84) −1.384ð73Þ
16 0.250 12 10.766(30) 24 9.350(34) −1.021ð33Þ
32 0.250 12 11.184(71) 24 9.596(45) −1.146ð60Þ
16 0.250 14 10.196(27) 28 9.452(33) −0.537ð30Þ
32 0.250 14 10.654(41) 28 9.747(87) −0.654ð69Þ
16 0.250 16 9.844(21) 32 9.543(44) −0.217ð35Þ
32 0.250 16 10.261(43) 32 9.669(59) −0.427ð52Þ
16 0.275 10 10.997(50) 20 9.429(33) −1.132ð43Þ
32 0.275 10 11.469(63) 20 9.664(99) −1.302ð85Þ
16 0.275 12 10.456(31) 24 9.362(45) −0.789ð39Þ
32 0.275 12 10.854(69) 24 9.587(61) −0.914ð67Þ
16 0.275 14 9.950(29) 28 9.532(45) −0.301ð39Þ
32 0.275 14 10.332(41) 28 9.85(11) −0.348ð86Þ
16 0.275 16 9.689(22) 32 9.654(56) −0.025ð43Þ
32 0.275 16 10.054(46) 32 9.768(72) −0.206ð61Þ
16 0.300 10 10.726(51) 20 9.429(41) −0.936ð47Þ
32 0.300 10 11.242(68) 20 9.65(11) −1.152ð96Þ
16 0.300 12 10.204(30) 24 9.400(59) −0.580ð48Þ
32 0.300 12 10.538(66) 24 9.615(84) −0.666ð77Þ
16 0.300 14 9.790(32) 28 9.639(66) −0.108ð53Þ
32 0.300 14 10.105(45) 28 9.99(14) −0.08ð10Þ
16 0.300 16 9.611(26) 32 9.782(70) 0.124(54)
32 0.300 16 9.939(53) 32 9.882(85) −0.041ð73Þ
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FIG. 9. Effect of changing Ls ¼ 16 to 32 at β ¼ 4.05. The filled
symbols show our preferred WS analysis using Ls ¼ 16 data and
the dashed lines with shaded error band the corresponding
interpolation for a section in g2c. Overlayed with open symbols
are the Ls ¼ 32 data points at β ¼ 4.05. Increasing Ls increases
g2c but slightly decreases βc;sðg2c;LÞ and the data points effectively
slides along the interpolated curve to the lower right.

7ASCII files containing the data corresponding to our final
results (envelope of nWS and WS) are uploaded as Supplemental
Material [52].
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Boulder-BU collaboration

• nf = 10  s=2 step beta function


• tension with 2018-2019 LatHC results?


• Symanzik improved gauge action


• massless Möbius Domain Wall fermions 


• tree-improved WSS gradient flow scheme


• three aspect ratios c=0.25, c=0.275, c=0.30


• largest volume L=32


• gauge coupling extended to 


• c=0.25,0.275 results strongly suggest IRFP?


• consistency with 4+6 composite Higgs model?

g2 ≈ 11

IRFP ?

2004.00754

IRFP ?

LatHC collaboration  
extended analysis now at Lat2021 

(Holland on Wed. and in this talk)

• nf = 10  s=2 step beta function


• 2018-2019 LatHC results largely extended


• Symanzik improved gauge action


• massless staggered fermions


• tree-improved SSS, SSC, WSC, WSS glow


• three aspect ratios c=0.25 c=0.275 c=0.30


• large volumes L=32, L=36, L=40, L=48


• gauge coupling now extended to 


• IRFP is not found, not even hinted! 

g2 ≈ 11
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https://arxiv.org/abs/2004.00754
https://arxiv.org/abs/2004.00754


our step -function results from ~ 200 lattice ensembles in large volumes:β

? ?

0 100 200 300 400 500 600 700
 trajectory count  ( MDT/10)

6

7

8

9

10

11

12

13

 g
2  

SSS      L = 48       C = 0.25

 =  2.90      Q = 0.5
Ncfg = 670  replica = 4   int = 25 (MD time)

g2 = 10.26  0.039
g2 = 10.24  0.041  (zero topology)

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

 Q
 to

po
lo

gi
ca

l c
ha

rg
e 

0 5 10 15 20 25 30

 gradient flow time t 

6

7

8

9

10

11

12

13

 g
2 (t)

 

 =  2.90      Q =0.5

g2 = 10.26  0.039

0 50 100 150 200 250 300 350
 trajectory count  ( MDT/10)

5

6

7

8

9

10

11

12

 g
2  

SSS      L = 48       C = 0.25

 =  3.10      Q = 0.18
Ncfg = 303  replica = 4   int = 21 (MD time)

g2 = 9.541  0.035
g2 = 9.538  0.035  (zero topology)

0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

 Q
 to

po
lo

gi
ca

l c
ha

rg
e 

0 5 10 15 20 25 30

 gradient flow time t 

5

6

7

8

9

10

11

12

 g
2 (t)

 

 =  3.10      Q =0.18

g2 = 9.541  0.035

Topology is a nonissue!

?

(we do not see any of the trends suggested by the Boulder-BU analysis)
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contact with Harlander-Neumann 3-loop at weak coupling! consistent results from two different -functions 

without any hint of IRFP!

β

our  derivative -function based results   
extrapolated from large L=32,36,40,48 volumes to infinite volume:

β = t ⋅ dg2/dt β

?
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Conclusions and outlook

• the two -functions complement each other well 


•   uses the  large volumes to reach the continuum limit


• there is no hint for IRFP in the ten-flavor model within lattice reach  

small volumes (limited by DWF) combined with linear fits at strong coupling leads to wrong results 
consistency with 4+6 composite Higgs model, hyperscaling, etc?


• there is a similar story in the twelve-flavor model, for another day …

β

β = t ⋅ dg2/dt
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