### Large-N limit of two-dimensional Yang-Mills theory with four supercharges

#### Navdeep Singh Dhindsa IISER Mohali





Work in progress with: Raghav Govind Jha, Anosh Joseph, and David Schaich

### OVERVIEW

- Motivation
- Lattice construction
- Simulation details
- Results

# -Motivation-

### MOTIVATION

Why study this theory ?

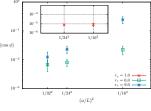
- Existence of holographic dual of its maximally supersymmetric cousin.
- Exploring finite and large-N dependence.
- Absence of sign problem.

JHEP **01** (2011) 058 Hanada, Kanamori JHEP **01** (2012) 108 Catterall, Galvez, Joseph, Mehta

### MOTIVATION

Why study this theory ?

- Existence of holographic dual of its maximally supersymmetric cousin.
- •. Exploring finite and large-N dependence.
- Absence of sign problem. JHEP **01** (2011) 058 Hanada, Kanamori JHEP **01** (2012) 108 Catterall, Galvez, Joseph, Mehta



PRD **97**, 054504 (2018) Catterall, Jha, Joseph

Simple 2d supersymmetric theory to study non-perturbatively

### TARGET

Study distributions of **scalars** with thermal boundary conditions using observable

$$\frac{1}{NN_tN_x} \sum_{i,N_t,N_x} Tr(X_i^2)$$

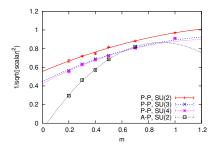
 To construct bound state in presence of flat directions, we expect that large-N is required

### TARGET

Study distributions of **scalars** with thermal boundary conditions using observable

$$\frac{1}{NN_tN_x} \sum_{i,N_t,N_x} Tr(X_i^2)$$

 To construct bound state in presence of flat directions, we expect that large-N is required  Detailed study with periodic boundary conditions
 PRD 80, 065014 (2009)
 Hanada, Kanamori



## -Lattice construction-

## Two-dimensional $\mathcal{N} = (2,2)$ SYM

Formulation of SYM theories on a 2*d* lattice JHEP **08** (2003) 024 Cohen, Kaplan, Katz, Unsal JHEP **03** (2004) 067 Sugino JHEP **11** (2004) 006 Catterall

We use **geometrical discretization** scheme, also used in PRD **97**, 054504 (2018) to probe dynamical SUSY breaking Catterall, Jha, Joseph

### Two-dimensional $\mathcal{N} = (2,2)$ SYM

Formulation of SYM theories on a 2*d* lattice JHEP **08** (2003) 024 Cohen, Kaplan, Katz, Unsal JHEP **03** (2004) 067 Sugino JHEP **11** (2004) 006 Catterall

We use **geometrical discretization** scheme, also used in PRD **97**, 054504 (2018) to probe dynamical SUSY breaking Catterall, Jha, Joseph

Dimensional Reduction  

$$\mathcal{N} = 1, d = 4$$
  
 $\downarrow$   
 $\mathcal{N} = 2, d = 3$   
 $\downarrow$   
 $\mathcal{N} = (2,2), d = 2$ 

Global symmetry: Four-dimensional theory  $SO(4)_E \times U(1)$ Two-dimensional theory  $SO(2)_E \times SO(2)_{R_1} \times U(1)_{R_2}$ 

### Two-dimensional $\mathcal{N} = (2,2)$ SYM

- •Two possible twists **A** and **B** as:
  - Internal symmetry group contains two SO(2)'s
- We work with **B** twist by embedding  $SO(2)_E$  with  $SO(2)_{R_1}$ :

 $SO(2)' = diag(SO(2)_E \times SO(2)_{R_1})$ 

Untwisted theory{ 4 bosonic d.o.f., 4 fermionic d.o.f. and 4 real supercharges

Fermions and supercharges decomposed into integer spin representation, scalars and gauge fields combine to give complexified field

```
Twisted theory{ d.o.f. Fermions (\eta, \psi_a and \chi_{ab})
and complexified field \mathcal{A}_a
```

### CONTINUUM ACTION

$$S = \frac{N}{4\lambda} \mathcal{Q} \int d^2 x \operatorname{Tr} \left( \chi_{ab} \mathcal{F}_{ab} + \eta \left[ \overline{\mathcal{D}}_a, \mathcal{D}_a \right] - \frac{1}{2} \eta d \right)$$

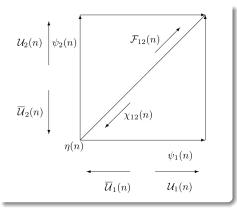
where  $\mathcal{A}_a = \mathcal{A}_a + i X_a$ ,  $\mathcal{D}_a = \partial_a + \mathcal{A}_a$  and  $\mathcal{F}_{ab} = [\mathcal{D}_a, \mathcal{D}_b]$ Scalar supercharge  $\mathcal{Q}$  acts on twisted fields as:

$$Q\mathcal{A}_{a} = \psi_{a}, \qquad Q\overline{\mathcal{A}}_{a} = 0, \qquad Q\psi_{a} = 0$$
$$Q\chi_{ab} = -\overline{\mathcal{F}}_{ab}, \qquad Q\eta = d, \qquad Qd = 0$$

Performing  ${\mathcal Q}$  variation and integrating out field d

$$S = \frac{N}{4\lambda} \int d^{2}x \operatorname{Tr} \left( -\overline{\mathcal{F}}_{ab} \mathcal{F}_{ab} + \frac{1}{2} \left[ \overline{\mathcal{D}}_{a}, \mathcal{D}_{a} \right]^{2} - \chi_{ab} \mathcal{D}_{[a} \psi_{b]} - \eta \overline{\mathcal{D}}_{a} \psi_{a} \right)$$

#### LATTICE CONSTRUCTION



- Gauge field → Wilson links
   A<sub>a</sub>(x) → U<sub>a</sub>(n), on links of square lattice
- To preserve SUSY ψ<sub>a</sub>(n) lies on same links as bosonic superpartners
- $\eta(n)$  associated with site
- $\chi_{ab}(n)$  lies on opposite orientation to diagonal

#### DISCRETIZED ACTION

, ,

Covariant difference operators Phys. Lett. B **661**, 52 (2008) Damgaard, Matsuura

$$\overline{\mathcal{D}}_{a}^{(-)} f_{a}(n) = f_{a}(n) \overline{\mathcal{U}}_{a}(n) - \overline{\mathcal{U}}_{a}(n - \hat{\mu}_{a}) f_{a}(n - \hat{\mu}_{a})$$

$$\mathcal{D}_{a}^{(+)} f_{b}(n) = \mathcal{U}_{a}(n) f_{b}(n + \hat{\mu}_{a}) - f_{b}(n) \mathcal{U}_{a}(n + \hat{\mu}_{b})$$

Lattice action :

$$S = \frac{N}{4\lambda} \sum_{n} \operatorname{Tr} \left( \mathcal{F}_{ab}^{\dagger}(n) \mathcal{F}_{ab}(n) + \frac{1}{2} \left( \overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \right)^{2} \right) \\ + \frac{N}{4\lambda} \sum_{n} \operatorname{Tr} \left( -\chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right)$$

To control flat direction divergences, add scalar potential term:

$$S_{\mu} = rac{N}{4\lambda} \mu^2 \sum_{n,a} \operatorname{Tr} \left( \overline{\mathcal{U}}_{a}(n) \mathcal{U}_{a}(n) - \mathbb{I}_{N} \right)^2$$

-Simulation details-

Code used publicaly available 🗘 daschaich/susy

Lattice with physical size  $\beta$   $\times$  L

Used symmetric lattice  $aN_t = \beta = L = aN_x$ 

Anti-periodic boundary conditions for fermions in temporal direction.

$$r_t = \sqrt{\lambda}\beta$$

 $r_t \rightarrow$  dimensionless temporal extent, effective coupling

### SIMULATION DETAILS

$$r_t = \sqrt{\lambda}eta$$
,  $\mu = \zeta rac{r_t}{N_t} = \zeta \sqrt{\lambda}a$ 

 $\mu 
ightarrow$  mass parameter to control possible flat direction divergences

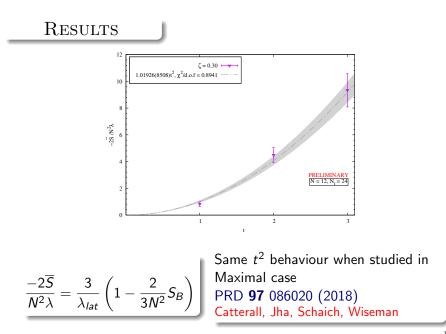
• Worked with :

- Various  $\zeta$  values to take  $\zeta \rightarrow 0$  limit
- Various combinations of temperature  $t = 1/r_t$ , N and  $N_t$

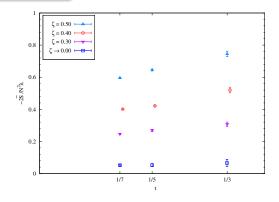
Observable in spotlight:

$$\frac{1}{NN_t N_x} \sum_{i, N_t, N_x} Tr(X_i^2)$$





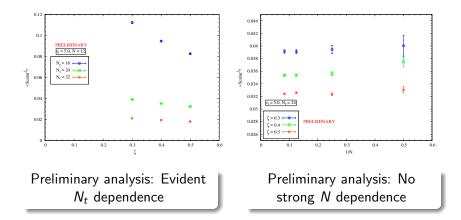




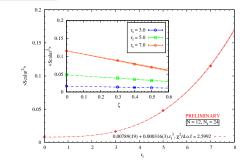
$$\frac{-2\overline{S}}{N^2\lambda} = \frac{3}{\lambda_{lat}} \left( 1 - \frac{2}{3N^2} S_B \right)$$

Different behavior to maximal theory dual JHEP **07** (2013) 101 Wiseman

### $\operatorname{Results}$



### RESULTS



$$<$$
scalar<sup>2</sup>  $> = \frac{1}{NN_tN_x} \sum_{i,N_t,N_x} Tr(X_i^2)$ 

Preliminary analysis:  $r_t^3$  behavior Different behavior to maximal theory dual JHEP **07** (2013) 101 Wiseman Different  $N, N_t$ and  $r_t$  still in progress

- Preliminary analysis indicates that construction of bound state is possible at finite temperature with even small N values provided we work with larger lattice
- The theory looks to be in different universality class to maximal cousin Not discussed in talk: We have not yet seen a finite-volume, large N deconfinement transition like maximal 2d case
- Work in progress with different couplings and N values to make our results more reliable

### Thank You



• Council of Scientific & Industrial Research, Govt. of India



• Computing Services, University of Liverpool



• Indian Institute of Science Education and Research, Mohali

Funding and Computing Resources