Large- N Limit of two-dimensional Yang-Mills THEORY WITH FOUR SUPERCHARGES

Navdeep Singh Dhindsa IISER Mohali

Work in progress with: Raghav Govind Jha, Anosh Joseph, and David Schaich

Overview

- Motivation
- Lattice construction
- Simulation details
- Results

—Motivation-

Motivation

Why study this theory ?

- Existence of holographic dual of its maximally supersymmetric cousin.
- Exploring finite and large- N dependence.
- Absence of sign problem.

JHEP 01 (2011) 058
Hanada, Kanamori
JHEP 01 (2012) 108
Catterall, Galvez, Joseph, Mehta

Motivation

Why study this theory ?

- Existence of holographic dual of its maximally supersymmetric cousin.
- Exploring finite and large- N dependence.
- Absence of sign problem.

JHEP 01 (2011) 058
Hanada, Kanamori
JHEP 01 (2012) 108
Catterall, Galvez, Joseph, Mehta

PRD 97, 054504 (2018)
Catterall, Jha, Joseph

Simple 2d supersymmetric theory to study non-perturbatively

TARGET

Study distributions of scalars with thermal boundary conditions using observable

$$
\frac{1}{N N_{t} N_{x}} \sum_{i, N_{t}, N_{x}} \operatorname{Tr}\left(X_{i}^{2}\right)
$$

- To construct bound state in presence of flat directions, we expect that large- N is required

TARGET

Study distributions of scalars with thermal boundary conditions using observable

$$
\frac{1}{N N_{t} N_{x}} \sum_{i, N_{t}, N_{x}} \operatorname{Tr}\left(X_{i}^{2}\right)
$$

- To construct bound state in presence of flat directions, we expect that large- N is required
- Detailed study with periodic boundary conditions PRD 80, 065014 (2009) Hanada, Kanamori

—Lattice construction-

Two-dimensional $\mathcal{N}=(2,2)$ SYM

> Formulation of SYM theories on a $2 d$ lattice JHEP 08 (2003) 024 Cohen, Kaplan, Katz, Unsal JHEP 03 (2004) 067 Sugino JHEP 11 (2004) 006 Catterall

We use geometrical discretization scheme, also used in PRD 97, 054504 (2018) to probe dynamical SUSY breaking Catterall, Jha, Joseph

Two-dimensional $\mathcal{N}=(2,2)$ SYM

Formulation of SYM theories on a $2 d$ lattice JHEP 08 (2003) 024 Cohen, Kaplan, Katz, Unsal JHEP 03 (2004) 067 Sugino JHEP 11 (2004) 006 Catterall

We use geometrical discretization scheme, also used in PRD 97, 054504 (2018) to probe dynamical SUSY breaking

Catterall, Jha, Joseph

Dimensional Reduction

$$
\begin{gathered}
\mathcal{N}=1, d=4 \\
\downarrow \\
\mathcal{N}=2, d=3 \\
\downarrow \\
\mathcal{N}=(2,2), d=2
\end{gathered}
$$

Global symmetry:
Four-dimensional theory

$$
S O(4)_{E} \times U(1)
$$

Two-dimensional theory $S O(2)_{E} \times S O(2)_{R_{1}} \times U(1)_{R_{2}}$

Two-dimensional $\mathcal{N}=(2,2)$ SYM

-Two possible twists \mathbf{A} and \mathbf{B} as:

- Internal symmetry group contains two $S O(2)$'s
- We work with B twist by embedding $S O(2)_{E}$ with $S O(2)_{R_{1}}$:

$$
S O(2)^{\prime}=\operatorname{diag}\left(S O(2)_{E} \times S O(2)_{R_{1}}\right)
$$

Untwisted theory\{ 4 bosonic d.o.f., 4 fermionic d.o.f. and 4 real supercharges
Fermions and supercharges decomposed into integer spin representation, scalars and gauge fields combine to give complexified field

Twisted theory\{ d.o.f. Fermions (η, ψ_{a} and $\chi_{a b}$) and complexified field \mathcal{A}_{a}

Continuum Action

$$
S=\frac{N}{4 \lambda} \mathcal{Q} \int d^{2} x \operatorname{Tr}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]-\frac{1}{2} \eta d\right)
$$

where $\quad \mathcal{A}_{a}=A_{a}+i X_{a}, \quad \mathcal{D}_{a}=\partial_{a}+\mathcal{A}_{a}$
Scalar supercharge \mathcal{Q} acts on twisted fields as:

$$
\begin{array}{rll}
\mathcal{Q} \mathcal{A}_{a}=\psi_{a}, & \mathcal{Q} \overline{\mathcal{A}}_{a}=0, & \mathcal{Q} \psi_{a}=0 \\
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b}, & \mathcal{Q} \eta=d, & \mathcal{Q} d=0
\end{array}
$$

Performing \mathcal{Q} variation and integrating out field d
$S=\frac{N}{4 \lambda} \int d^{2} x \operatorname{Tr}\left(-\overline{\mathcal{F}}_{a b} \mathcal{F}_{a b}+\frac{1}{2}\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]^{2}-\chi_{a b} \mathcal{D}_{[a} \psi_{b]}-\eta \overline{\mathcal{D}}_{a} \psi_{a}\right)$

Lattice construction

- Gauge field \rightarrow Wilson links $\mathcal{A}_{a}(x) \rightarrow \mathcal{U}_{a}(n)$, on links of square lattice
- To preserve SUSY $\psi_{a}(n)$ lies on same links as bosonic superpartners
- $\eta(n)$ associated with site
- $\chi_{a b}(n)$ lies on opposite orientation to diagonal

Discretized Action

Covariant difference operators Phys. Lett. B 661, 52 (2008) Damgaard, Matsuura

$$
\begin{aligned}
& \overline{\mathcal{D}}_{a}^{(-)} f_{a}(n)=f_{a}(n) \overline{\mathcal{U}}_{a}(n)-\overline{\mathcal{U}}_{a}\left(n-\hat{\mu}_{a}\right) f_{a}\left(n-\hat{\mu}_{a}\right) \\
& \mathcal{D}_{a}^{(+)} f_{b}(n)=\mathcal{U}_{a}(n) f_{b}\left(n+\hat{\mu}_{a}\right)-f_{b}(n) \mathcal{U}_{a}\left(n+\hat{\mu}_{b}\right)
\end{aligned}
$$

Lattice action :

$$
\begin{aligned}
& S=\frac{N}{4 \lambda} \sum_{n} \operatorname{Tr}\left(\mathcal{F}_{a b}^{\dagger}(n) \mathcal{F}_{a b}(n)+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)\right)^{2}\right) \\
& +\frac{N}{4 \lambda} \sum_{n} \operatorname{Tr}\left(-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right)
\end{aligned}
$$

To control flat direction divergences, add scalar potential term:

$$
S_{\mu}=\frac{N}{4 \lambda} \mu^{2} \sum_{n, a} \operatorname{Tr}\left(\overline{\mathcal{U}}_{a}(n) \mathcal{U}_{a}(n)-\mathbb{I}_{N}\right)^{2}
$$

-Simulation details

Simulation Details

Code used publicaly available \bigcirc daschaich/susy

Lattice with physical size $\beta \times L$

Used symmetric lattice $\quad a N_{t}=\beta=L=a N_{x}$

Anti-periodic boundary conditions for fermions in temporal direction.

$$
r_{t}=\sqrt{\lambda} \beta
$$

$r_{t} \rightharpoondown$ dimensionless temporal extent, effective coupling

Simulation Details

$$
r_{t}=\sqrt{\lambda} \beta, \quad \mu=\zeta \frac{r_{t}}{N_{t}}=\zeta \sqrt{\lambda} a
$$

$\mu \longmapsto$ mass parameter to control possible flat direction divergences

- Worked with:
- Various ζ values to take $\zeta \rightarrow 0$ limit
- Various combinations of temperature $t=1 / r_{t}, N$ and N_{t}
$\underline{\text { Observable in spotlight: }} \quad \frac{1}{N N_{t} N_{x}} \sum_{i, N_{t}, N_{x}} \operatorname{Tr}\left(X_{i}^{2}\right)$

Results

$$
\frac{-2 \bar{S}}{N^{2} \lambda}=\frac{3}{\lambda_{l a t}}\left(1-\frac{2}{3 N^{2}} S_{B}\right)
$$

Results

$$
\frac{-2 \bar{S}}{N^{2} \lambda}=\frac{3}{\lambda_{l a t}}\left(1-\frac{2}{3 N^{2}} S_{B}\right)
$$

Results

Preliminary analysis: No strong N dependence

Results

$$
<\text { scalar }^{2}>=\frac{1}{N N_{t} N_{x}} \sum_{i, N_{t}, N_{x}} \operatorname{Tr}\left(X_{i}^{2}\right)
$$

Preliminary analysis: r_{t}^{3} behavior
Different behavior to maximal theory dual

Different N, N_{t} and r_{t} still in progress JHEP 07 (2013) 101 Wiseman

Conclusion and Way Forward

- Preliminary analysis indicates that construction of bound state is possible at finite temperature with even small N values provided we work with larger lattice
- The theory looks to be in different universality class to maximal cousin

Not discussed in talk: We have not yet seen a finite-volume, large N deconfinement transition like maximal 2d case

- Work in progress with different couplings and N values to make our results more reliable

Thank You

- Council of Scientific \& Industrial Research, Govt. of India

- Indian Institute of Science

Funding and Computing Resources

Education and Research, Mohali

