Mixed adjoint-fundamental matter and applications towards SQCD and beyond

Georg Bergner FSU Jena with Stefano Piemonte arXiv:2008.02855 (2021)

Lattice 2021: July 29, 2021

Gauge theories with adjoint-fundamental matter

Motivations:

- supersymmetric theories
- composite Higgs scenarios
- quantum distillation and color-flavor center symmetry

$$S_L = S_G + \sum_{x,y} \sum_{n_f=1}^{N_f^{(F)}} \bar{\psi}_x^{n_f} (D_w^{(F)})_{xy} \psi_y^{n_f} + \sum_{x,y} \sum_{n_f=1}^{N_f^{(A)}} \bar{\psi}_x^{n_f} (D_w^{(A)})_{xy} \psi_y^{n_f}$$

Supersymmetric gauge theories

- pure gauge sector, A_μ + SUSY partner: gluino (Majorana fermion in adjoint representation)
- $\bullet \ \mathcal{N}=1$ supersymmetric QCD: coupling to quark, squark fields
- heavy squark field limit: $(N_f^{(A)} = 1/2) + N_f^{(F)}$ gauge theory
- similarly $\mathcal{N}=2$ SQCD connected to $N_f^{(A)}=1$

Composite Higgs scenarios

SU(2) with $(N_f^{(F)} = 2)$ fundamental $+ (N_f^{(A)} = 1)$ adjoint matter:

- N_f^(A) = 1 adjoint: (near) conformal, large mass anomalous dimension (Talk E. Bennet (7/30/21), arXiv:2103.10485)
- $\rightarrow\,$ coupled to standard model by 2 fundamental flavors
 - N_f^(F) = 2 fundamental: composite Higgs scenario (Talk V. Drach)
- \rightarrow extended towards (near) conformality by $N_f^{(A)}$ adjoint flavors

Ultra minimal walking technicolor

[T. A. Ryttov, F. Sannino, Phys. Rev. D, arXiv:0809.0713]

Color-flavor center symmetry

- QCD: quarks in fundamental representation break center symmetry
- adjoint matter: no explicit center symmetry breaking
- adjoint matter with periodic boundary conditions: absence of deconfinement at small compactifications, semiclassical confined regime on $\mathbb{R}^3 \times S^1$
- N_f^(F) = N_c: combined flavor color symmetry with appropriate boundary conditions
- N_f^(F) = N_c with adjoint matter: semiclassical confined regime (M. Ünsal, arXiv:2104.12352)

Simulations on the lattice

- clover improved Wilson fermions: tuning of two independent mass parameters
- chiral symmetry breaking pattern:

$$\mathrm{SU}(2N_f^{(F)}) \to \mathrm{Sp}(2N_f^{(F)}), \quad \mathrm{SU}(2N_f^{(A)}) \to \mathrm{SO}(2N_f^{(A)})$$

• alternative scenario: (near) conformal

Bulk transition

Limiting the β range.

Consistency checks

• cross check with [R. Arthur et al., Phys. Rev. D, arXiv:1602.06559]

• $\tilde{w}_{0\chi}m_{V\chi} = 1.008(9)$ compatible with continuum extrapolation $\tilde{w}_{0\chi}m_{V\chi} = 1.01(3)$

Chiral fits

- simplest analysis: mass dependence in same representation, dominant contribution
- relevant contribution from the other representation, captured by expansion including the two masses

[Ayyar et al., Phys. Rev. D [arXiv:1710.00806]]

Conformal scaling

near fixed point scaling of correlation function

$$C_{H}(t, g_{i}, m_{i}, \mu) = b^{-2y_{H}}C_{H}(t/b, b^{y_{g_{i}}}g_{i}, b^{y_{i}}m_{i}, \mu/b)$$

- assuming $\exp(-M_H t)$ dependence, scaling for one representation $M_H \sim m^{1/y}$
- generalization for two representations, anomalous dimensions y_F , y_A for adjoint, fundamental representations

$$\frac{am_{V,F}}{am_{PS,F}} = F_R(am_{PCAC,F}(am_{PCAC,A})^{-y_F/y_A})$$

[A. Hasenfratz, C. Rebbi, O. Witzel, arXiv:1609.01401]

- fit according to dependence on one representation: γ_F, γ_A around 0.5 0.8
- $am_{PCAC,F}(am_{PCAC,A})^{-r}$ dependence favors r = 0.1
- not consistent picture of conformal scaling

Summary/Conclusions

- mixed adjoint+fundamental SU(2) gauge theory: interesting non-trivial extension of general picture of strongly interacting gauge theories
- first study of simulations with SU(2) mixed adjoint+fundamental matter
- disfavors conformal scaling, but still quite close to conformal
- indications for a chiral behavior
- future applications: phase transitions and addition of scalar fields