$N_f = 1$ QCD as an analog computer for SUSY

Felix Ziegler

University of Southern Denmark (SDU)

with M. Della Morte, B. Jäger, F. Sannino and J. Tobias Tsang

Lattice21 - Thu, 07/29/2021

$N_f = 1 \ \mathbf{QCD}$

Physics

- study BSM physics and SUSY
- update on hadronic spectrum see earlier results by Farchioni et al.

History

Corrigan & Ramond, 1979 Sannino et al. hep-th/0309252 Armoni et al. hep-th/0403071 Veneziano et al. hep-th/0603045 Creutz, hep-th/0609187 Farchioni et al. 0810.0161[hep-lat]

Numerics

- simulate SUSY without need to simulate SUSY
- single flavour of Wilson fermions \rightarrow sign problem

(effective) theories of **larks** \equiv fermions in the two-index anti-symmetric representation of SU(N_c)

Corrigan & Ramond, Phys. Lett. B 87, 1979 Sannino & Shifman, hep-th/0309252, 2003

$$\mathcal{L} = \frac{1}{2g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \overline{\psi} (m_0 + \gamma_\mu D_\mu) \psi$$

$$\psi^{ij} = \psi^{b} (t^{b})^{ij}, \quad i, j = 1, ..., N_{c},$$
 $a = 1, ..., N_{c}^{2} - 1, \quad b = 1, ..., \frac{N_{c}^{2} - N_{c}}{2}$

Source: The Guardian, Photograph: Mike Lane/Alamy

Source: The Guardian, Photograph: Mike Lane/Alamy

The One Flavour Plan

compute hadron spectrum

study the sign problem by computing sgn $(\det(D))$

Probe lark theory for $N_c
ightarrow \infty$

low-energy effective Lagrangians $\frac{M_{PS}}{M_S} = 1 - \frac{22}{9N_c} - \frac{4}{9}\beta + O(1/N_c^2)$

Sannino & Shifman, hep-th/0309252

planar equivalence

$$\frac{M_{PS}}{M_S} = 1 - \frac{2}{N_c} + \dots$$

Armoni & Imeroni, hep-th/0508107

Check deviation from degeneracy of even and odd parity mesons!

Lattice simulation of $N_f = 1$ QCD

Setup

- Symanzik improved gauge action, O(a) improved Wilson fermions, $c_{SW} = 1$
- RHMC algorithm
- single gauge coupling $\beta = 4.5$, $\Rightarrow a \approx 0.06 \text{fm} \text{ (gradient flow)}$

Peculiarities of $N_f = 1$ QCD

- lack of chiral symmetry
- unknown physical scale

Challenge

choose suitable physical volume and parameters of the action

Configuration generation

Finite volume spectrum

- Hadron masses + excited states
- Constraint fits

$$C_{ij}(t) = \sum_n \langle 0 | \hat{O}_i | n
angle \langle n | \hat{O}_j^{\dagger} | 0
angle e^{-t m_n}$$

 scalar glueball, *q* Γ*q* - scalar, vector, pseudo-scalar, *i*, *j* ∈ {*PS*, *S*, *V*, *G*}

- disconnected diagrams
- smearing

naive expectation

Example for a correlator fit

The sign problem in $N_f = 1$ QCD

- Wilson fermions
 ⇒ det(D) < 0 possible
- Need to monitor sign of the fermion determinant
- Look at **real eigenvalues** of *D* where they change sign.

In practice

• analyze zeros of eigenvalues of $Q = \gamma_5 D$

$$Q\psi_i = \lambda_i \psi_i$$

• Quantities: eigenvalue function of $\lambda_i(m_0)$, chirality $\chi_i(m_0) = (\psi_i, \gamma_5 \psi_i)(m_0)$ (slope)

Sign problem analysis - stage 1

Tracking method

- see Mohler & Schaefer, 2003.13359[hep-lat], 2020
- monitor eigenvalue behaviour as a function of m_0
 - assume basis {\u03c6\u03c6_i} varies slowly and continuously
 - overlap of $\psi_i(m_0)$ and $\psi_j(m_0 + \Delta m_0)$

Results at **lowest** bare mass ($\kappa = 0.1410$)

- L/a = 24: det D > 0 for all configs
- L/a = 16: det D < 0 for $\lesssim 1\%$ of the configs
- sign problem mild

Pseudo-scalar state 0⁻⁺

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY - scalar state 0⁺⁺

PRELIMINARY

- 1 mass dependent state
- 1 mass independent state

PRELIMINARY

- 1 volume dependent state
- 1 volume independent state

Categorizing the scalar state 0^{++}

PRELIMINARY

• volume independent

PRELIMINARY

volume dependent

From remaining lowest state: inconsistent with glueball \rightarrow torelon

PRELIMINARY - Lark matter predictions

PRELIMINARY

PRELIMINARY - Lark matter predictions

PRELIMINARY

Summary

- ✓ update on hadron spectrum including excited states
 ⇒ mass dependence of scalar state
- ToDo: extrapolation to zero quark mass and fit of the data for low-energy effective theory comparison
- \checkmark sign problem mild **BUT** must be monitored \rightarrow multi-flavour QCD

Perspectives

 \checkmark code development \rightarrow moving to GPUs

Thank you very much and stay tuned!

Back-up slides

- larks are fermions in the two-indexed anti-symmetric representation of SU(N_c), $q_{ij} = -q_{ji}$
- dimension: $N_c(N_c 1)/2$
- (theory of a single lark) $ightarrow \mathcal{N} = 1$ SYM as $\mathit{N_c}
 ightarrow \infty$
- $N_c = 3$: lark is an anti-quark and anti-lark is a quark \Rightarrow lark theory equivalent to $N_f = 1$ QCD

	gauge fields	fermion fields	repr. dimension (fermions)	
	adjoint, 8	two-index anti-symmetric	$\frac{N_c(N_c-1)}{2}$	Dirac (2 x 4)
$N_f = 1$ QCD	adjoint, 8	fundamental	N_c	Dirac (2 x 4)
$\mathcal{N} = 1$ SYM	adjoint, 8	adjoint	$N_{c}^{2} - 1$	Majorana (2 x 2)

The LapH method

Use here

- disconnected diagrams (all-to-all correlators)
 - \Rightarrow improve correlator signal
- reduce excited state contamination

How does it work

- project quark sinks into subspace spanned by lowest N_{ev} eigenmodes of the covariant Laplacian Morningstar, "Hadron Spectroscopy in Lattice QCD", 2016
- tune approach to plateau varying $\textit{N}_{\rm ev}$

