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Asymtotic Safety with EDT

It was pointed out by Weinberg that if garvity is
asymptotically safe, it would be renormalizable
non-perturbatively.[1]

Euclidean dynamical triangulations (EDT) is an
approach to lattice quantum gravity. Geometry is
constructed by gluing 4-simplices together. In
[arXiv:1604.02745], it was shown that when a
non-trivial measure term is added and associated
coupling is fine-tuned, EDT gives the correct
Hausdorff dimension and spectral dimension (≈ 4).

This talk summarizes the work done in
arXiv:2102.04492.

Figure 1: Visualization of one
configuration. Dots represent
4-simplices and the lines show
connection between the nearest
neighbors.

Mingwei Dai (speaker), Jack Laiho, Marc Schiffer, Judah Unmuth-Yockey (Syracuse University)July 27th, 2021 3 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Euclidean Dynamical Triangulations I

The path integral of 4-d Euclidean Einstein gravity in the continuum is:

ZE =

∫
D[g]D[ϕ]e−SEH[g]−SM[ϕ], (1)

where SEH is the Euclidean Einstein-Hilbert action:

SEH = − 1
16πG

∫
d4x√g(R − 2Λ), (2)

and SM is the matter sector (only scalar for now):

SM =

∫
d4x√g

(
1
2gµν∂µϕ∂νϕ+

1
2m2

0ϕ
2
)
, (3)

Mingwei Dai (speaker), Jack Laiho, Marc Schiffer, Judah Unmuth-Yockey (Syracuse University)July 27th, 2021 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Euclidean Dynamical Triangulations II

Working in“quenched approximation”1, for lattice QG, the path integral becomes:

ZE=
∑

T
1

CT

[∏N2
j=1 O(tj)

β
]
e−SER (4)

where CT divides out equivalant ways of labeling the vertices in a given geometry, N2
is the total number of triangles in our geometry, β is a free parameter, and SER is the
Einstein-Regge action:[3]

SER=−κ
∑N2

j=1 V2δj+λ
∑N4

j=1 V4=−κ2N2+κ4N4, (5)

where κ = (8πG)−1, λ = κΛ, δj = 2π −O(tj)arccos(1/4) is the deficit angle around a
triangular hinge tj, and where the volume of a d-simplex of equilateral edge length a
is given by

Vd=
√

d+1
d!
√

2d
ad. (6)

The action of the matter sector becomes:

Slat
M = 1

2
∑

⟨xy⟩(ϕx−ϕy)2+
m2

0
2

∑
x ϕ2

x (7)

where x represents the 4-simplex the scalar field lives on.

1‘Quenched’ means that the matter field does not influence the geometry.
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Scalar propagator and correlators I

We can write the action of matter sector as

Slat
M =

∑
x,y

ϕxLxyϕy (8)

where Lxy = (Dx + m2
0)− Axy, Dx is the number of neighbors each simplex has and

Axy =

{
1 if x and y share a dual edge
0 otherwise.

(9)

Then the one-particle and two-particle correlators can be calculated as

G(r) =
⟨∑

x,y L−1
xy δ|x−y|,r∑

x,y δ|x−y|,r

⟩
and G(2)(r) =

⟨∑
x,y(L

−1
xy )2δ|x−y|,r∑

x,y δ|x−y|,r

⟩
(10)

We can compute the renormalized mass and the binding energy by fitting G and G(2)

to their asymptotic form:

G(r) ∝ e−mr

rp , G(2) ∝ e−Mr

rq , (11)
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Scalar propagator and correlators II

The binding energy is defined to be

Eb ≡ 2m − M, (12)

If the mass of the scalar field is much lighter than the Planck mass, we can find the
binding energy by solving the non-relativistic Schrödinger equation with Newtonian
gravitational potential:[4]

−∇2ψ (r, θ, ϕ) + 2µ
(
−Gm2

r − E
)
ψ (r, θ, ϕ) = 0, (13)

where µ is the reduced mass (in this case m/2), we will get the energy levels to be:

En =
G2m5

4n2 (14)

Therefore, the relation between the ground state binding energy and particle mass is
as follows:

E1 =
G2m5

4 (15)

We expect to see this relation in the continuum, infinite-volume limit for our lattice.
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Computation of renormalized mass and binding energy I

Here is what we do to compute the binding energy:
1 Compute the propagator (L−1

xy ) for different bare masses (m0 = 0.001 to
m0 = 0.050).

2 Choose multiple (1, 5, 20 or 60) sources in each configuration to calculate G and
G(2)

3 Fit the G and F = G(2)/G2 to a logarithmic form: f(r) = Xr + Y + Z log(r)

The parameter X should give us the renormalized mass when we fit G, and binding
energy when we fit F.

Lxy = (Dx + m2
0)− Axy

G(r) =
⟨∑

x,y L−1
xy δ|x−y|,r∑

x,y δ|x−y|,r

⟩
and G(2)(r) =

⟨∑
x,y(L

−1
xy )2δ|x−y|,r∑

x,y δ|x−y|,r

⟩
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Computation of renormalized mass and binding energy II

0.00 0.01 0.02 0.03 0.04 0.05
m0

0.00

0.05

0.10

0.15

0.20

0.25

m

N4 = 4000
N4 = 8000
N4 = 16000
N4 = 32000

Figure 2: Example of renormalized mass vs bare mass. (β = 0)

The renormalized mass approaches zero as the bare mass approaches zero. This is in
agreement with the requirement by shift symmetry, that the mass must be only
multiplicatively renormalized.
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Mass dependence of the binding energy

We fit the binding energy and renormalized mass to E(m) = Amα. A = G2/4 and
α = 5 is expected in the non-relativistic regime and the continuum, infinite-volume
limit.

0.00 0.05 0.10 0.15 0.20
m

0.00

0.01

0.02

0.03

0.04

0.05

E b

Fit
Data
Fit range

Figure 3: The power-law fit to the binding energy plotted against the renormalized mass for the
N4 = 16, 000, β = −0.776 ensemble. The fit range is shown in black, and the solid line is the fit to the
data. The fit corresponds to a χ2/d.o.f. = 0.59, with a p-value of 0.62.

With G and α from multiple ensembles, we are able to do the continuum,
infinite-volume extrapolation.
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Continuum, infinite volume extrapolation I

We choose to fit the simplest ansatz suggested by finite-size scaling and discretization
dependence suggested by symmetries of the theory.

α =
Hα

V + Iαℓ2
rel +

Jα

V2 + Kαℓ
4
rel + Lα (16)

and

G =
HG

V + IGℓ
2
rel +

JG

V2 + KGℓ
4
rel + LG, (17)

where Hi, Ii, Ji, Ki, and Li are fit parameters for their respective quantities.

In addition, we also perform fits dropping the ∼ ℓ4
rel term, which we are able to do

when we also drop the two coarsest lattice spacing.
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Continuum, infinite volume extrapolation II

From the fit, we get a α value of 4.6 ± 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1/V

1

2

3

4

5
rel = 0
rel = 0.7
rel = 0.8

rel = 1
rel = 1.28
rel = 1.59

Figure 4: For this fit we find χ2/d.o.f. = 0.56
corresponding to a p-value of 0.73, and the
continuum, infinite volume value is α = 4.6(9).
The physical volume is measured by 1000
4-simplices. For example, an ensemble with
4000 4-simplices has V = 4.

0.0 0.5 1.0 1.5 2.0 2.5
2
rel

1

2

3

4

5
V = 2 000
V = 8 000
V = 32 000

Figure 5: Same data and fit from Figure 4

In 1 + 1 dimensions, E1 ∝ m. In 2 + 1 dimensions, E1 ∝ m2. Taking a simple
quadratic fit, we get

α = d2 − 4d + 5
Such an α value indicates a dimension between 3.6 and 4.1.
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Continuum, infinite volume extrapolation III

For the gravitational constant on our lattice, we get:

G = 15 ± 5

in units of our fiducial lattice spacing.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1/V

0

5

10

15

20

G

rel = 0
rel = 0.7
rel = 0.8

rel = 1
rel = 1.28
rel = 1.59

Figure 6: For this fit we find χ2/d.o.f. = 0.37
corresponding to a p-value of 0.87, and the
continuum, infinite volume value is G = 15(5).
The physical volume is measured by 1000
4-simplices. For example, an ensemble with
4000 4-simplices has V = 4.

0.0 0.5 1.0 1.5 2.0 2.5
2
rel

0

5

10

15

20

G

V = 2 000
V = 8 000
V = 32 000

Figure 7: Same data and fit from Figure 6

We can then determine our fiducial lattice spacing ℓfid, for the first time in EDT
studies, to be √

G = ℓPl = (3.9 ± 0.7)ℓfid (18)
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Conclusion

We show numerically that the renormalized scalar mass approaches zero as bare mass
approaches zero. And that the relation between binding energy and renormalized
mass can be well-described by Newton’s potential in the appropriate non-relativistic,
classical limit.

We verified that the Newtonian binding on our EDT lattice in the continuum,
infinite-volume limit matches Newtonian gravity in the non-relativistic,
weak-coupling limit, with α = 4.6 ± 0.9, indicating a dimension between 3.6 and 4.1.

We obtain a value of G = 15 ± 5 (in units of our fiducial lattice spacing) so that we
are able to relate our lattice spacing to the Planck length. In particular, our fiducial
lattice spacing is related to the Planck length as:

√
G = ℓPl = (3.9 ± 0.7)ℓfid (19)
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The End
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