Isospin Breaking for Dark Matter

Axel Maas, Fabian Zieler

30th of July 2021 Lattice 2021 Online

Der Wissenschaftsfonds

Strongly-interacting dark matter

- Nature of dark matter yet unclear
- Mostly indirect astronomical information
- Dark matter density profiles in galaxies (cusp-vs-core problem) allow for/suggest large cross sections between dark matter particles
	- Large in relation to dark matter mass

Strongly-interacting dark matter

- Nature of dark matter yet unclear
- Mostly indirect astronomical information
- Dark matter density profiles in galaxies (cusp-vs-core problem) allow for/suggest large cross sections between dark matter particles
	- Large in relation to dark matter mass
- Possibility: QCD-like dark sector
	- Or even more complex...
	- Collider signatures: Dark showers,...

- Dark matter relic density imposes conditions on candidate theories
	- Still not too restrictive

- Dark matter relic density imposes conditions on candidate theories
	- Still not too restrictive
- Possibility: Allowing $3 \rightarrow 2$ processes
	- "SIMP" miracle
	- E.g. by a Wess-Zumino-Witten term
	- Does not need very light dark hadrons
		- Relevant scale: Dark Yang-Mills scale

- Dark matter relic density imposes conditions on candidate theories
	- Still not too restrictive
- Possibility: Allowing $3 \rightarrow 2$ processes
	- "SIMP" miracle
	- E.g. by a Wess-Zumino-Witten term
	- Does not need very light dark hadrons
		- Relevant scale: Dark Yang-Mills scale
- Requires some (quasi-)stable hadron
	- Depends on SM coupling

• Sp(4) Yang-Mills theory

- $Sp(4)$ Yang-Mills theory
- 2 fundamental fermions
	- Non-degenerate masses favorable for dark matter phenomenology
	- Pseudo-real gauge group: Quarks and antiquarks related

- $Sp(4)$ Yang-Mills theory
- 2 fundamental fermions
	- Non-degenerate masses favorable for dark matter phenomenology
	- Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

 $U(4=2 N_f)$

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
	- Non-degenerate masses favorable for dark matter phenomenology
	- Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

 $U(4=2 N_f)$ → *Anomaly SU* (4)

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
	- Non-degenerate masses favorable for dark matter phenomenology
	- Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

$$
U(4=2 N_f)^{\text{Anomaly}} SU(4) \overset{D \chi SB}{\rightarrow} Sp(4)
$$

5 (Pseudo)Goldstones: $30 ($ \sim $\frac{1}{9}$ $\frac{1}{2}0 ($ \sim $\frac{1}{9}$ \sim $\frac{1}{9}$

[Kogut et al.'00, Holland et al.'03,Bennet et al.'17,'19 Kulkarni et al., unpublished]

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
	- Non-degenerate masses favorable for dark matter phenomenology
	- Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

$$
U(4=2N_f)^{\text{Anomaly}} SU(4) \overset{D \times SB}{\rightarrow} Sp(4) \overset{Non-degenerate masses}{\rightarrow} SU(2) \times SU(2)
$$

5 (Pseudo)Goldstones: 0 and 0⁺ pairs degenerate
3 0⁻ ($\sim \overline{q}q$) 2 0⁺ ($\sim qq$) 0⁻ singlet

- Rich hadron phenomenology
	- Many more states
	- Identification of dark matter candidate by SM coupling
		- If remaining symmetry unbroken: Degenerate pairs of 0^+ and 0^-
		- 0⁻ singlet can decay

- Rich hadron phenomenology
	- Many more states
	- Identification of dark matter candidate by SM coupling
		- If remaining symmetry unbroken: Degenerate pairs of 0^+ and 0^-
		- 0 singlet can decay
- Collider/cosmology/astrophysics determined at very low scales/time-like physics
	- Requires input to effective theories
	- Spectra, low-energy constants, phase shifts...
	- Rich lattice program

Lattice simulations

- Simulations use the HiREP code at fixed $m_{_1}$. / $m_{_0}$ −
	- Sp(4) derivative \rightarrow see 1909.12662 and 1712.04220 and several talks in this session

Lattice simulations

- Simulations use the HiREP code at fixed $m_{_1}$. / $m_{_0}$ −
	- Sp(4) derivative \rightarrow see 1909.12662 and 1712.04220 and several talks in this session
- Mass splitting directly in the Dirac operator
	- Both in generation of configurations and operators

Lattice simulations

- Simulations use the HiREP code at fixed $m_{_1}$. / $m_{_0}$ −
	- Sp(4) derivative \rightarrow see 1909.12662 and 1712.04220 and several talks in this session
- Mass splitting directly in the Dirac operator
	- Both in generation of configurations and operators
- Phenomenology suggest large tree-level $masses \rightarrow much easier to simulate than in$ QCD
	- Disconnected contributions still need to be fully included, but likely are irrelevantly small

Results: Pseudoscalars Degenerate results: Bennett et al. 1912.12662

Pseudoscalars

Pseudoscalars

Pseudoscalars

Results: Pseudoscalars Degenerate results: Bennett et al. 1912.12662

Results: Pseudoscalars Degenerate results: Bennett et al. 1912.12662

Pseudoscalars

PRELIMINARY

Results: Nectors Degenerate results: Bennett et al. 1912.12662

Vectors **PRELIMINARY** $\overline{2}$ m_f/m_f Lattice set Doublet, β =6.9, 14 × 24³, m/m₁=0.30
Singlet, β =6.9, 14 × 24³, m/m₁=0.30
Doublet, β =7.05, 14 × 24³, m/m₁=0.37
Singlet, β =7.05, 14 × 24³, m/m₁=0.37 $\ddot{\blacktriangle}$ \bullet \circ 1.8 Ā \Box Doublet, $\beta = 7.2$, 14×24^3 , m/m₁=0.27
Singlet, $\beta = 7.2$, 14×24^3 , m/m₁=0.27 \blacktriangle Δ $\overline{\blacktriangle}$ 1.6 Ā Ť $\frac{1}{4}$ 1.4 4 $\ddot{\Diamond}$ $\bar{\mathrm{A}}$ Ŏ Δ 1.2 \bullet 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 $\overline{2}$ 2.2 Ω $\overline{(m_2 - m_1)/m_1}$

Extremely similar! - Probably because of heavy fermions...

Results: Decay constants^{Degenerate results: Bennett et al. 1912.12662}

Pseudoscalar decay constant

PRELIMINARY

Results: Decay constants^{Degenerate results: Bennett et al. 1912.12662}

Vector decay constant

Also relatively similar...

Summary

- Mass splitting/isospin breaking beyond **OCD**
	- Heavy fermion case
	- Relevant to (strongly-interacting) dark matter physics

Summary

- Mass splitting/isospin breaking beyond **OCD**
	- Heavy fermion case
	- Relevant to (strongly-interacting) dark matter physics

• Mass splittings at hadronic level differ from quark mass splittings

Summary

- Mass splitting/isospin breaking beyond **OCD**
	- Heavy fermion case
	- Relevant to (strongly-interacting) dark matter physics

• Mass splittings at hadronic level differ from quark mass splittings

• Vector and pseudoscalar similar