Isospin Breaking for Dark Matter

Axel Maas, Fabian Zieler

30th of July 2021 Lattice 2021 Online

NAWI Graz Natural Sciences

Der Wissenschaftsfonds

Strongly-interacting dark matter

- Nature of dark matter yet unclear
- Mostly indirect astronomical information
- Dark matter density profiles in galaxies (cusp-vs-core problem) allow for/suggest large cross sections between dark matter particles
 - Large in relation to dark matter mass

Strongly-interacting dark matter

- Nature of dark matter yet unclear
- Mostly indirect astronomical information
- Dark matter density profiles in galaxies (cusp-vs-core problem) allow for/suggest large cross sections between dark matter particles
 - Large in relation to dark matter mass
- Possibility: QCD-like dark sector
 - Or even more complex...
 - Collider signatures: Dark showers,...

- Dark matter relic density imposes conditions on candidate theories
 - Still not too restrictive

- Dark matter relic density imposes conditions on candidate theories
 - Still not too restrictive
- Possibility: Allowing $3 \rightarrow 2$ processes
 - "SIMP" miracle
 - E.g. by a Wess-Zumino-Witten term
 - Does not need very light dark hadrons
 - Relevant scale: Dark Yang-Mills scale

- Dark matter relic density imposes conditions on candidate theories
 - Still not too restrictive
- Possibility: Allowing $3 \rightarrow 2$ processes
 - "SIMP" miracle
 - E.g. by a Wess-Zumino-Witten term
 - Does not need very light dark hadrons
 - Relevant scale: Dark Yang-Mills scale
- Requires some (quasi-)stable hadron
 - Depends on SM coupling

• Sp(4) Yang-Mills theory

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
 - Non-degenerate masses favorable for dark matter phenomenology
 - Pseudo-real gauge group: Quarks and antiquarks related

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
 - Non-degenerate masses favorable for dark matter phenomenology
 - Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

 $U(4=2N_f)$

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
 - Non-degenerate masses favorable for dark matter phenomenology
 - Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

 $U(4=2N_f) \xrightarrow{Anomaly} SU(4)$

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
 - Non-degenerate masses favorable for dark matter phenomenology
 - Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

$$U(4=2N_f) \stackrel{Anomaly}{\rightarrow} SU(4) \stackrel{D\chi SB}{\rightarrow} Sp(4)$$

5 (Pseudo)Goldstones: 3 0^{-} (~qq) 2 0^{+} (~qq)

[Kogut et al.'00, Holland et al.'03,Bennet et al.'17,'19 Kulkarni et al., unpublished]

- Sp(4) Yang-Mills theory
- 2 fundamental fermions
 - Non-degenerate masses favorable for dark matter phenomenology
 - Pseudo-real gauge group: Quarks and antiquarks related
- Symmetry breaking pattern

$$U(4=2N_{f}) \xrightarrow{Anomaly} SU(4) \xrightarrow{D \times SB} Sp(4) \xrightarrow{Non-degenerate masses} SU(2) \times SU(2)$$
5 (Pseudo)Goldstones:
3 0⁻ (~qq) 2 0⁺ (~qq) 0⁻ and 0⁺ pairs degenerate
0⁻ singlet

- Rich hadron phenomenology
 - Many more states
 - Identification of dark matter candidate by SM coupling
 - If remaining symmetry unbroken: Degenerate pairs of 0⁺ and 0⁻
 - 0⁻ singlet can decay

- Rich hadron phenomenology
 - Many more states
 - Identification of dark matter candidate by SM coupling
 - If remaining symmetry unbroken: Degenerate pairs of 0⁺ and 0⁻
 - 0⁻ singlet can decay
- Collider/cosmology/astrophysics determined at very low scales/time-like physics
 - Requires input to effective theories
 - Spectra, low-energy constants, phase shifts...
 - Rich lattice program

Lattice simulations

- Simulations use the HiREP code at fixed $m_1 m_0$
 - Sp(4) derivative → see 1909.12662 and 1712.04220 and several talks in this session

Lattice simulations

- Simulations use the HiREP code at fixed $m_1 m_0 m_0$
 - Sp(4) derivative → see 1909.12662 and 1712.04220 and several talks in this session
- Mass splitting directly in the Dirac operator
 - Both in generation of configurations and operators

Lattice simulations

- Simulations use the HiREP code at fixed $m_1 m_0 m_0$
 - Sp(4) derivative → see 1909.12662 and 1712.04220 and several talks in this session
- Mass splitting directly in the Dirac operator
 - Both in generation of configurations and operators
- Phenomenology suggest large tree-level masses → much easier to simulate than in QCD
 - Disconnected contributions still need to be fully included, but likely are irrelevantly small

Pseudoscalars

PRELIMINARY

Pseudoscalars

PRELIMINARY

Pseudoscalars

Pseudoscalars

Pseudoscalars

PRELIMINARY

Results: Vectors

Vectors PRELIMINARY 2 m₁/m₁ Lattice set Doublet, β =6.9, 14 × 24³, m/m₁=0.30 Singlet, β =6.9, 14 × 24³, m/m₁=0.30 Doublet, β =7.05, 14 × 24³, m/m₁=0.37 ¥ • 0 1.8 ¥ Singlet, β =7.05, 14 × 24³, m/m₁=0.37 Doublet, β =7.2, 14 × 24³, m/m₁=0.27 Singlet, β =7.2, 14 × 24³, m/m₁=0.27 Δ 1.6 Ā ļ ¥ 1.4 Å Õ фÎ Å Õ Å 1.2 ţ 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 0 $(m_{2}-m_{1})/m_{1}$

Extremely similar! - Probably because of heavy fermions...

Results: Decay constants

Pseudoscalar decay constant

PRELIMINARY

Results: Decay constants

Vector decay constant

Also relatively similar...

PRELIMINARY

Summary

- Mass splitting/isospin breaking beyond QCD
 - Heavy fermion case
 - Relevant to (strongly-interacting) dark matter physics

Summary

- Mass splitting/isospin breaking beyond QCD
 - Heavy fermion case
 - Relevant to (strongly-interacting) dark matter physics

 Mass splittings at hadronic level differ from quark mass splittings

Summary

- Mass splitting/isospin breaking beyond QCD
 - Heavy fermion case
 - Relevant to (strongly-interacting) dark matter physics

 Mass splittings at hadronic level differ from quark mass splittings

Vector and pseudoscalar similar