The de Sitter Instanton from Euclidean Dynamical Triangulations Lattice 2021 July 27, 2021

Marc Schiffer, Heidelberg University In collaboration with S. Bassler, J. Laiho, and J. Unmuth-Yockey, based on Phys.Rev.D 103 (2021) 114504.

• Perturbative quantum gravity:

- Perturbative quantum gravity: loss of predictivity
- Key idea of asymptotic safety: Quantum realization of scale symmetry

- Perturbative quantum gravity: loss of predictivity
- Key idea of asymptotic safety: Quantum realization of scale symmetry
 - imposes infinitely many conditions on theory space
 - relevant directions:
 need measurement
 - irrelevant directions: predictions of theory

Evidence for AS from the lattice

• Discretization of spacetime in terms of triangulations

$$\int \mathcal{D}g \, e^{-S[g]} \to \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \left[\prod_{j=1}^{N_2} \mathcal{O}(t_j)^{\beta} \right] e^{-S_{\mathrm{E}}}$$

with Euclidean Einstein-Regge action

$$S_{\rm E} = -\kappa_2 N_2 + \kappa_4 N_4$$

Evidence for AS from the lattice

• Discretization of spacetime in terms of triangulations

$$\int \mathcal{D}g \, e^{-S[g]} \to \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \left[\prod_{j=1}^{N_2} \mathcal{O}(t_j)^{\beta} \right] e^{-S_{\mathrm{E}}}$$

with Euclidean Einstein-Regge action

$$S_{\rm E} = -\kappa_2 N_2 + \kappa_4 N_4$$

• tune κ_4 to critical value, investigate $\beta - \kappa_2$ plane

[Coumbe, Laiho, 2014]

Evidence for AS from the lattice

• Discretization of spacetime in terms of triangulations

$$\int \mathcal{D}g \, e^{-S[g]} \to \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \left[\prod_{j=1}^{N_2} \mathcal{O}(t_j)^{\beta} \right] e^{-S_{\mathrm{E}}}$$

with Euclidean Einstein-Regge action

$$S_{\rm E} = -\kappa_2 N_2 + \kappa_4 N_4$$

• tune κ_4 to critical value, investigate $\beta - \kappa_2$ plane

 Partition function after sum over triangulations:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$Z(\kappa_4, \kappa_2) = \sum_{N_4} e^{-(\kappa_4 - \kappa_4^c)N_4} f(N_4, \kappa_2),$$

with pseudo-critical value κ_4^c : $\kappa_4 \to \kappa_4^c$ allows $N_4 \to \infty$

 Partition function after sum over triangulations:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$Z(\kappa_4, \kappa_2) = \sum_{N_4} e^{-(\kappa_4 - \kappa_4^c)N_4} f(N_4, \kappa_2),$$

with pseudo-critical value κ_4^c : $\kappa_4 \to \kappa_4^c$ allows $N_4 \to \infty$

 In continuum limit: volume term corresponds to cosmological constant

$$(\kappa_4 - \kappa_4^c) N_4 \sim \frac{\Lambda}{8\pi G} N_4 a^4,$$

 Partition function after sum over triangulations:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$Z(\kappa_4, \kappa_2) = \sum_{N_4} e^{-(\kappa_4 - \kappa_4^c)N_4} f(N_4, \kappa_2),$$

with pseudo-critical value $\kappa_4^c \colon \kappa_4 \to \kappa_4^c$ allows $N_4 \to \infty$

• In continuum limit: volume term corresponds to cosmological constant

$$(\kappa_4 - \kappa_4^c) N_4 \sim \frac{\Lambda}{8\pi G} N_4 a^4,$$

• Power counting:

$$\frac{1}{16\pi G}\int\!\!\mathrm{d}^4x\,R\sim\frac{\sqrt{V}}{G}\,,$$

and therefore

$$f(N_4,\kappa_2) = e^{k(\kappa_2)\sqrt{N_4}}.$$

• Saddle point approximation:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_4^c)^2} \Rightarrow k = |\kappa_4 - \kappa_4^c| \sqrt{N_4} \,.$$

Use finite-volume scaling of κ_4 to test recovery of semi-classical limit

• Saddle point approximation:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_4^c)^2} \Rightarrow k = |\kappa_4 - \kappa_4^c| \sqrt{N_4}.$$

Use finite-volume scaling of κ_4 to test recovery of semi-classical limit

• Match lattice saddle point approximation with continuum calculation:

$$Z(\kappa_2, \kappa_4) \approx \exp\left(\frac{k^2(\kappa_2)}{4(\kappa_4 - \kappa_4^c)}\right)$$

• Saddle point approximation:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_4^c)^2} \Rightarrow k = |\kappa_4 - \kappa_4^c| \sqrt{N_4}.$$

Use finite-volume scaling of κ_4 to test recovery of semi-classical limit

• Match lattice saddle point approximation with continuum calculation:

$$Z(\kappa_2, \kappa_4) \approx \exp\left(\frac{k^2(\kappa_2)}{4(\kappa_4 - \kappa_4^c)}\right) = \exp\left(\frac{3\pi}{G\Lambda}\right)$$

Assumption: Continuum is dominated by de Sitter instanton [Hawking, Moss, 1987] Extract G from lattice data:

$$\frac{G}{\ell_{\rm fid}^2} \sim \left(\frac{a}{\ell}\right)^2 \frac{\ell_{\rm rel}^2}{|s|} \, .$$

• Saddle point approximation:

[Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

$$\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_4^c)^2} \Rightarrow k = |\kappa_4 - \kappa_4^c| \sqrt{N_4}.$$

Use finite-volume scaling of κ_4 to test recovery of semi-classical limit

• Match lattice saddle point approximation with continuum calculation:

$$Z(\kappa_2, \kappa_4) \approx \exp\left(\frac{k^2(\kappa_2)}{4(\kappa_4 - \kappa_4^c)}\right) = \exp\left(\frac{3\pi}{G\Lambda}\right)$$

Assumption: Continuum is dominated by de Sitter instanton [Hawking, Moss, 1987] Extract G from lattice data:

$$\frac{G}{\ell_{\rm fid}^2} \sim \left(\frac{a}{\ell}\right)^2 \frac{\ell_{\rm rel}^2}{|s|} \, .$$

Numerical result: finite volume scaling

Numerical result: finite volume scaling

- Extract slope for all ensembles
- Compute *G* for each of the ensembles

- Extract slope for all ensembles
- Compute *G* for each of the ensembles
- Perform continuum, infinite volume limit extrapolation:

$$G = \frac{H_G}{V} + I_G \ell_{\mathsf{rel}}^2 + J_G \ell_{\mathsf{rel}}^4 + K_G,$$

- Extract slope for all ensembles
- Compute *G* for each of the ensembles
- Perform continuum, infinite volume limit extrapolation:

$$G = \frac{H_G}{V} + I_G \ell_{\mathsf{rel}}^2 + J_G \ell_{\mathsf{rel}}^4 + K_G,$$

Continuum, infinite volume limit: $G = 14.3 \pm 3.6$ $\chi^2/d.o.f = 0.87$, *p*-value: 0.46.

- Compute *G* for each of the ensembles
- Perform continuum, infinite volume limit extrapolation:

$$G = \frac{H_G}{V} + I_G \ell_{\rm rel}^2 + J_G \ell_{\rm rel}^4 + K_G$$

Continuum, infinite volume limit: $G = 14.3 \pm 3.6$ From Newtonian binding: $G = 15 \pm 5$

- Extract slope for all ensembles
- Compute *G* for each of the ensembles
- Perform continuum, infinite volume limit extrapolation:

$$G = \frac{H_G}{V} + I_G \ell_{\rm rel}^2 + J_G \ell_{\rm rel}^4 + K_G$$

Continuum, infinite volume limit: $G = 14.3 \pm 3.6$ From Newtonian binding: $G = 15 \pm 5$

Thank you for your attention!

$\ell_{\rm rel}$	V	β	κ_2	s	$\chi^2/d.o.f.$	p-value
1.59(10)	25.6(6.4)	1.5	0.5886	0.724(32)	1.4	0.24
1.28(9)	10.7(3.0)	0.8	1.032	0.6840(55)	0.35	0.79
1	2.0(0)	0	1.605	0.652(14)	0.60	0.62
1	4.0(0)	0	1.669	0.521(11)	1.4	0.24
1	8.0(0)	0	1.7024	0.502(12)	0.43	0.65
1	16.0(0)	0	1.7325	0.436(39)	0.76	0.38
0.80(4)	1.64(32)	-0.6	2.45	0.393(22)	0.15	0.96