Complex Langevin: Boundary Terms at Poles

Erhard Seiler

Max-Planck-Institut für Physik, München (Werner-Heisenberg-Institut)

1. Complex Langevin

To sample complex holomorphic density $ho \propto e^{-S}$ on \mathbb{R}^d search for

 $P \ge 0$: probability density on \mathbb{C}^d , s.t.

$$\langle \mathcal{O} \rangle \equiv \int_{\mathbb{R}^d} \mathcal{O}(x) \rho(x) dx = \int_{\mathbb{C}^d} \mathcal{O}(x+iy) P(x,y) dx dy \,.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for holomorphic observables \mathcal{O} .

Klauder, Parisi 1983:

P equilibrium distribution of real stochastic process on \mathbb{C}^d .

 $K = -\nabla S$ complex:

$$dz = Kdt + dw, \quad K = -\nabla S$$

 $(dw \propto \text{real Wiener increment } dw = \eta(t)dt, \eta \text{ white noise}).$ Process wanders into the complex realm \mathbb{C}^d

$$dx = K_x dt + dw, \quad K_x = \operatorname{Re} K$$

 $dy = K_y dt, \quad K_y = \operatorname{Im} K$

 ρ holomorphic $\implies K$ meromorphic Zeroes of ρ produce poles of K!

> Lattice 2021, July 28th < □ → < 클 → < 클 → 〈 클 → 〈 클 → 〈 클 → 〈 클 → 〈 역 ◇ < ◇

2. Boundary terms may cause problems (Aarts, ES, Sexty, Stamatescu: PRD81(2010) 054508)

Want:

$$\langle \mathcal{O}
angle_{
ho(t)} = \langle \mathcal{O}
angle_{P(t)} \quad orall \, t \geq 0 igg[(*)$$

true if

$$\frac{\partial}{\partial \tau}F(t,\tau) = 0$$
 (boundary term)

and (*) holds for t = 0 where

$$F(t,\tau) \equiv \int P(x,y;t-\tau)\mathcal{O}(x+iy;\tau)dx\,dy$$

Lattice 2021. July 28th

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

interpolates between two sides of (*).

Boundary terms from integration by parts

- at ∞

-at poles

Evolution of observables

 $\mathcal{O}(z)$ holomorphic, K(z) at least meromorphic:

 $\partial_t \mathcal{O}(z;t) = L_c \mathcal{O}(z;t), \quad L_c \equiv [\nabla_z + K] \cdot \nabla_z;$

 $\mathcal{O}(z;0)=\mathcal{O}(z)$

Expect: $\mathcal{O}(z; t)$ meromorphic where K is.

Duality:

$$\langle \mathcal{O} \rangle_{
ho(t)} = \mathcal{O}(x_0 + iy_0; t)$$

(integration by parts, need $\rho \rightarrow$ 0 for $|x| \rightarrow \infty)$

 3. No boundary term at pole for $t = \infty$

Previous talk by D. Sexty: Boundary terms at ∞ found at $t = \infty$.

At pole of K: $P_{eq} = \lim_{t\to\infty} P(x, y; t)$ vanishes linearly.

Pole at 0. Look at

$$B_{\delta} \equiv \int_{x^2 + y^2 \le \delta^2} dx \, dy P_{\rm eq}(x, y) L_c \mathcal{O}(x + iy) \quad (*).$$

Use Cauchy-Riemann equations, integrate by parts: B_{δ} is pure boundary term because

$$L^T P_{eq} = 0$$

 \mathcal{O} holomorphic \Longrightarrow integrand of (*) bounded near $0 \Longrightarrow B_{\delta} \to 0$ as $\delta \to 0$.

Lattice 2021, July 28th 《ロ》《遼》《臺》《臺》 · 톨 · 의숙은 4. Exemplary case: One-pole model

$$\rho(z) = (z - z_p)^{n_p} \exp(-\beta z^2),$$

"Pure pole model": $z_p = 0, \beta = 0$

For $n_p = 2$ integral kernel:

$$\exp(tL_c)(z,z') = \frac{z'}{z\sqrt{4\pi t}}\exp\left(\frac{(z-z')^2}{4t}\right)$$

Lattice 2021, July 28th

 $z' = x' + iy_0$, integrate over x'.

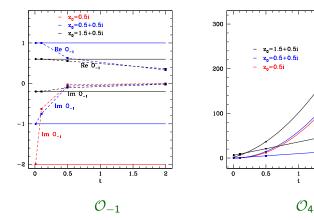
Exact evolution of observables

Observables: $\mathcal{O}_k(z) \equiv z^k, k = 1, \dots 4 \text{ and } k = -1.$

$$\begin{aligned} \mathcal{O}_1(z;t) &= z + \frac{2t}{z}, \\ \mathcal{O}_2(z;t) &= z^2 + 6t, \\ \mathcal{O}_3(z;t) &= z^3 + 12tz + \frac{12t^2}{z}, \\ \mathcal{O}_4(z;t) &= z^4 + 20tz^2 + 60t^2, \\ \mathcal{O}_{-1}(z;t) &= \frac{1}{z}. \end{aligned}$$

Lattice 2021, July 28th ・ロト ・ (アト・モミト・ミト シーモー つくへ)

Comparison CL – exact evolution



odd powers disagree ∃ boundary term

even powers agree ∄ boundary term

Re O

Im 0,

2

Im O

1.5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

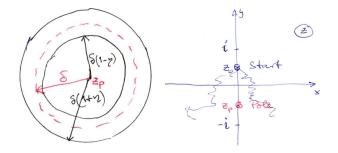
Lattice 2021, July 28th

5. Direct evaluation of boundary term

Now $\beta > 0$, $z_p \neq 0$. Approximate boundary term:

$$B_{\delta} = -\oint_{x^2+y^2=\delta^2} \vec{K} \cdot \vec{n} P_{z_0}(x,y;t) \mathcal{O}(x+iy) ds + o(\delta),$$

Approximate circle by rings $(1-\eta)\delta < |z-z_p| < (1+\eta)\delta$



Lattice 2021, July 28th

Numerical results:

Choose

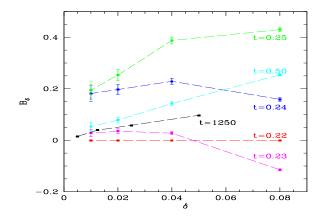
 $n_p = 2, \beta = 1.0, z_p = -0.5 i, z_0 = 0.5 i$

For these parameters: pole at edge of supp $P_{eq} \Longrightarrow CL$ wrong For β large enough, pole outside supp $P_{eq} \Longrightarrow CL$ right (Aarts, Sexty, ES, Stamatescu: JHEP 05 (2017) 044)

Remark:

CL always = linear combination of integrals over paths between zeroes of ρ . (conjectured: Salcedo: Phys.Lett. B305 (1993) 125, proven: Salcedo&ES: J.Phys.A 52 (2019) 3, 035201)

Lattice 2021, July 28th < □ → < 酉 → < 重 → < 重 → □ 車 ∽ 𝔍 𝔅



Boundary term arises for t > 0.23, disappears for $t \to \infty$.

Lattice 2021, July 28th < □ > < 클 > < 클 > < 클 > ◇ < ♡ < ♡

6. Take-home message:

Boundary terms at poles are seen at finite Langevin time.

6. Take-home message:

• Boundary terms at poles are seen at finite Langevin time.

• Boundary terms at ∞ seen at infinite Langevin time.

Many thanks to all the people with whom I could collaborate on CL in so many years:

Gert Aarts, Felipe Attanasio, Lorenzo Bongiovanni, Pietro Giudice, Benjamin Jäger, Frank James, Jan Pawlowski, Lorenzo Luis Salcedo, Manuel Scherzer, Dénes Sexty, Ion-Olimpiu Stamatescu, Jacek Wosiek