# Universal Properties of the Vortex in the (2+1)-d O(2) through dualization

Joao C. Pinto Barros

AEC, Institute for Theoretical Physics, University of Bern

July 27, 2021

Lattice 2021



## Outline

- The (2+1)-d O(2) Scalar Field Theory;
  - broken phase;
  - vortex excitation;

## Outline

- The (2+1)-d O(2) Scalar Field Theory;
  - broken phase;
  - vortex excitation;
- The quantum vortex;
  - Dualization: vortex as a charged particle;
  - Non-perturbative quantization;

< 日 > り < (~

## Outline

- The (2+1)-d O(2) Scalar Field Theory;
  - broken phase;
  - vortex excitation;
- The quantum vortex;
  - Dualization: vortex as a charged particle;
  - Non-perturbative quantization;
- Results and perspectives.

Symmetric Phase



Symmetric Phase



In the broken phase:

- Spontaneous breakdown of the O(2) symmetry;
- Massless modes: Goldstone bosons.

Symmetric Phase



Symmetric Phase



• Classically, the mass is logarithmically divergent  $E(R) \sim \pi v^2 \log \frac{R}{R_0}$ ;

- Classically, the mass is logarithmically divergent  $E(R) \sim \pi v^2 \log \frac{R}{R_0}$ ;
- Semi-classical approximation quantizes only collective degrees of freedom;
  - vortex has an infinite mass; J.-M. Duan, Phys. Rev. B49 (1994) 12381
     D. J. Thouless, J. R. Anglin, Phys. Rev. Lett. 99 (2007) 105301.
  - but a finite mass associated to the core; J.-M. Duan, Phys. Rev. B49 (1994) 12381.
     G. Baym, E. Chandler, J. Low Temp. Phys. 50 (1983) 57
  - and recently it was argued that the mass does not diverge at all;
    - breaks translation invariance;
    - G. Delfino, W. Selke, A. Squarcini, Phys. Rev. Lett. 122 (2019) 050602

- Classically, the mass is logarithmically divergent  $E(R) \sim \pi v^2 \log \frac{R}{R_0}$ ;
- Semi-classical approximation quantizes only collective degrees of freedom;
  - vortex has an infinite mass; J.-M. Duan, Phys. Rev. B49 (1994) 12381
     D. J. Thouless, J. R. Anglin, Phys. Rev. Lett. 99 (2007) 105301.
  - but a finite mass associated to the core; J.-M. Duan, Phys. Rev. B49 (1994) 12381.
     G. Baym, E. Chandler, J. Low Temp. Phys. 50 (1983) 57
  - and recently it was argued that the mass does not diverge at all;
    - breaks translation invariance;
    - G. Delfino, W. Selke, A. Squarcini, Phys. Rev. Lett. 122 (2019) 050602
- Fully non-perturbative approach is non-trivial:
  - vortex correlation not readily amenable to numerical simulations;
  - single vortex never occurs at finite periodic volume.









 $s(l_{xy})$  with constraints  $l_{xy} + l_{yz} + l_{zw} + l_{wx} = 0$ 

# 5/11



 $s\left(l_{xy}, A_{*\Box}\right) \quad \text{with} \quad \delta\left(l_{xy} + l_{yz} + l_{zw} + l_{wx}\right) = \sum_{A_{*\Box} \in \mathbb{Z}} e^{iA_{*\Box}\left(l_{xy} + l_{yz} + l_{zw} + l_{wx}\right)}$ 



Integrate out  $l_{xy} \Rightarrow$  Gauge Theory :  $\tilde{s}(A_{*\Box})$ 

#### The dualization picture



J. Fröhlich, G. Morchio, F. Strocchi, Phys. Lett. B89 (1979) 61
D. Buchholz, K. Fredenhagen, Commun. Math. Phys. 84 (1982) 1
D. Buchholz, Commun. Math. Phys. 85 (1982) 49
D. Buchholz, J. E. Roberts, Commun. Math. Phys. 330 (2014) 935

## The charged particle

• Vortex correlation  $\rightleftharpoons$  charged particle ( $\chi_x$ ) correlation;

• Vortex correlation  $\rightleftharpoons$  charged particle ( $\chi_x$ ) correlation;

• The proper gauge invariant operator creates the particle along with a cloud of soft photons

$$\chi_x^{\mathsf{C}} = e^{i \triangle^{-1} \delta \mathsf{A}_x} \chi_x$$

## The charged particle

• Vortex correlation  $\rightleftharpoons$  charged particle  $(\chi_x)$  correlation;

 The proper gauge invariant operator creates the particle along with a cloud of soft photons

$$\chi_x^{\mathsf{C}} = e^{i \triangle^{-1} \delta A_x} \chi_x$$

XxCharged particle

Charged particle + Cloud of photons

• Vortex correlation function:  $\langle \chi_x^C \chi_y^{C\dagger} \rangle$ 

P. A. M. Dirac, Canad. J. Phys. 33 (1955) 650 J. Fröhlich, P. A. Marchetti, Euro. Phys. Lett. 2 (1986) 933  $\chi_x^{\mathsf{C}} = e^{i \triangle^{-1} \delta \mathsf{A}_x} \chi_x$ 

### The charged particle at finite volume



• No net charge on the torus;

### The charged particle at finite volume



- No net charge on the torus;
- C-periodic boundary conditions (C\* boundary conditions):

$$A_{\mu}\left(x+L\hat{i}\right) = -A_{\mu}\left(x\right) - \partial_{\mu}\varphi_{i}\left(x\right)$$
$$\chi\left(x+L\hat{i}\right) = \chi\left(x\right)^{*}e^{i\varphi_{i}\left(x\right)}$$

U.-J. Wiese, Nucl. Phys. B375 (1992) 45 B. Lucini, A. Patella, A. Ramos, N. Tantalo, JHEP 1602 (2016) 076C I. Campos, P. Fritzsch, M. Hansen, M. K. Marinkovic, A. Patella, A. Ramos, N. Tantalo, Eur. Phys. J. C (2020) 80:195

### The C-periodic vortex: mass and charge computation



< 日 > り < (~

#### The C-periodic vortex: mass and charge computation



9/11

### The C-periodic vortex: mass and charge computation



Vortices interact with their C-periodic copy

$$m = \frac{e^2}{4\pi} \log\left(\frac{L}{r_0}\right) \rightarrow \text{Determine the charge}$$

#### Results: the continuum limit



- Log divergent mass;
- Universal vortex charge:  $e_r^2 = 3.58(8) \times (4\pi\rho)$ ;
- Breaking of Lorentz invariance:  $E = m + \frac{p^2}{2m_k} \Rightarrow \frac{m_k}{m} = 0.71(3)$  (for  $L\rho = 1.43(2)$ ).

- Computation of the vortex mass and vortex charge
  - The logarithmic divergent mass survives quantization;
  - The vortex charge gets renormalized.





- Computation of the vortex mass and vortex charge
  - The logarithmic divergent mass survives quantization;
  - The vortex charge gets renormalized.





- Future directions
  - Study the other side of the phase transition;

- Computation of the vortex mass and vortex charge
  - The logarithmic divergent mass survives quantization;
  - The vortex charge gets renormalized.





- Future directions
  - Study the other side of the phase transition;
  - Gauge the original O(2) symmetry;

- Computation of the vortex mass and vortex charge
  - The logarithmic divergent mass survives quantization;
  - The vortex charge gets renormalized.





- Future directions
  - Study the other side of the phase transition;
  - Gauge the original O(2) symmetry;
  - Study the SU(2) quantum vortex.

- Computation of the vortex mass and vortex charge
  - The logarithmic divergent mass survives quantization;
  - The vortex charge gets renormalized.





- Future directions
  - Study the other side of the phase transition;
  - Gauge the original O(2) symmetry;
  - Study the SU(2) quantum vortex.









Standard: 
$$e^{-S(\{\theta\})} = \prod_{\langle x,y \rangle} e^{\frac{1}{g^2} \cos(\theta_x - \theta_y)}$$
  
Villain:  $e^{-S(\{\theta\})} = \prod_{\langle x,y \rangle} \sum_{n_{xy} \in \mathbb{Z}} e^{-\frac{1}{2g^2}(\theta_x - \theta_y + 2\pi n_{xy})^2}$ 

## The duallized action

- The final gauge theory will depend on the initial action;
- We probe two actions:
  - Villain action

$$e^{-S(\{\theta\})} = \prod_{\langle x,y \rangle} \sum_{n_{xy} \in \mathbb{Z}} e^{-\frac{1}{2g^2} \left(\theta_x - \theta_y + 2\pi n_{xy}\right)^2} \stackrel{\text{Dual}}{\rightleftharpoons} e^{-\tilde{S}(\{A\})} = \prod_{\Box} e^{-\frac{g^2}{2} F_{\Box}^2}$$

Standard action

$$e^{-S(\{\theta\})} = \prod_{\langle x,y\rangle} e^{\frac{1}{g^2} \cos(\theta_x - \theta_y)} \stackrel{\text{Dual}}{\rightleftharpoons} e^{-\tilde{S}(\{A\})} = \prod_{\Box} I_{F_{\Box}} \left(\frac{2}{g^2}\right)$$

$$F_{\Box}=A_1+A_2-A_3-A_4$$





# 11/11

• Integer gauge theory

Dual action :  $A_{x\mu} \in \mathbb{Z}$ 

$$\tilde{S}\left(\{A\}\right) = \sum_{\Box} \tilde{s}\left(F_{\Box}\right)$$

Integer gauge theory

Dual action :  $A_{x\mu} \in \mathbb{Z}$  $\tilde{S}(\{A\}) = \sum_{\Box} \tilde{s}(F_{\Box})$ 

• It can be regarded as (2 + 1) QED coupled to a charged scalar field J. Fröhlich, P. A. Marchetti, Euro. Phys. Lett. 2 (1986) 933

 $\begin{aligned} \text{Scalar QED} : \bar{A}_{x\mu} \in \mathbb{R} \\ \mathcal{S}_{\text{QED}}\left(\left\{\bar{A}\right\}, \left\{\chi\right\}\right) &= \sum_{\Box} s\left(\bar{F}_{\Box}\right) - \frac{\kappa}{2} \sum_{x,\mu} \left(\chi_{x+\hat{\mu}}^* e^{i\bar{A}_{x\mu}} \chi_x + \chi_x^* e^{-i\bar{A}_{x\mu}} \chi_{x+\hat{\mu}}\right) \end{aligned}$ 

• Integer gauge theory

Dual action :  $A_{x\mu} \in \mathbb{Z}$  $\tilde{S}(\{A\}) = \sum_{\Box} \tilde{s}(F_{\Box})$ 

• It can be regarded as (2 + 1) QED coupled to a charged scalar field J. Fröhlich, P. A. Marchetti, Euro. Phys. Lett. 2 (1986) 933

Scalar QED:  $\bar{A}_{x\mu} \in \mathbb{R}$  $S_{\text{QED}}\left(\{\bar{A}\}, \{\chi\}\right) = \sum_{\Box} s\left(\bar{F}_{\Box}\right) - \frac{\kappa}{2} \sum_{x,\mu} \left(\chi_{x+\hat{\mu}}^* e^{i\bar{A}_{x\mu}} \chi_x + \chi_x^* e^{-i\bar{A}_{x\mu}} \chi_{x+\hat{\mu}}\right)$ 

• Limit  $\kappa \to +\infty$  and unitary gauge,  $\chi_{\rm x} = 1$ :

$$-\frac{\kappa}{2}\sum_{x,\mu}\left(\chi_{x+\hat{\mu}}^*e^{i\bar{A}_{x\mu}}\chi_x+\chi_x^*e^{-i\bar{A}_{x\mu}}\chi_{x+\hat{\mu}}\right)\to-\kappa\sum_{x,\mu}\cos\bar{A}_{x\mu}\Rightarrow\bar{A}_{x\mu}\in2\pi\mathbb{Z}$$

## The vortex as a charged particle



$$\langle \chi_x^{\mathcal{C}} \chi_y^{\mathcal{C}\dagger} \rangle \stackrel{\text{Dualize}}{\xrightarrow{}} \xrightarrow{Z_v}_{\text{back}}$$

11/11



• The spin stiffness characterizes the distance to the critical point;



• Approaching the continuum limit



11/11

Approach the continuum limit at a finite volume characterized by  $ho_0 = 
ho L$ 



## Results: approaching the continuum limit





11/11