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Motivation

Ψv = flux tube

a spectrum of localized quantum
excitations of the surrounding field exists
for a static quark and antiquark pair in the
confining phase of a pure gauge theory.

In confining phase, the color electric field associated with the pair of color charges is collimated
into a flux tube, the flux tube exists as a number of vibrational modes.

On the other hand, in ordinary QED,

any disturbance of the field surrounding a static charge can be viewed as the creation of
some set of photons superimposed on a Coulombic background.

then there are no stable localized excitations.

But, could such a spectrum of localized excitations exist in Higgs phase in gauge Higgs
theories? (interacting, yet nonconfining)
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q=2 Abelian Gauge-Higgs theory

q=2 Abelian Gauge-Higgs theory,

S = −β
∑
plaq

Re[Uµ(x)Uν(x + µ̂)U∗µ(x + ν̂)U∗ν(x)]− γ
∑
x,µ

Re[φ∗(x)U2
µ(x)φ(x + µ̂)] .

the scalar field has charge q = 2 (as do Cooper pairs)

impose a unimodular constraint φ∗(x)φ(x) = 1 (for simplicity)

a relativistic generalization of the Landau-Ginzburg effective model of superconductivity
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q=2 Abelian Gauge-Higgs theory

What do we consider:

1 Physical states containing a static fermion and anti-fermion at sites x, y

2 Stable localized excitations of the U(1) gauge field and Higgs field surrounding a static
charge

3 Excitations have been reported in SU(3) gauge Higgs theory (Phys. Rev. D 102, 054504
(2020)) and in chiral U(1) gauge Higgs theory (arXiv:2104.12237) by Jeff Greensite

What do we show in our work?:

We compute the energy excitations above the ground state of Higgs + U(1) gauge field via
lattice Monte Carlo simulations.

If the excited state above the ground state is less than the photon mass, the excited state is
stable!
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How do we identify such localized excitations in MC simulations?

What do we exactly measure in our calculations?

Let us first consider a static fermion and anti-fermion pair at sites x y each of ±2
electric charge

|Φα(R)〉 = Qα(R)|Ψ0〉 ,

where Ψ0 is the vacuum state, and

Qα(R) = [ψ(x)ζα(x)] × [ζ∗α(y)ψ(y)] .

Here the ψ,ψ are operators creating double-charged static fermions of opposite
charge transforming as ψ(x)→ e2iθ(x)ψ(x), and the {ζα(x)} are a set of operators,
which may depend on some (possibly non-local) combination of the Higgs and gauge
fields, also transforming as ζ(x)→ e2iθ(x)ζ(x), under a gauge transformation

Uµ(x)→ exp(iθ(x))Uµ(x) exp(−θ(x + µ̂)).
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Possible choice for ζ ?

One possible choice for ζ is the Higgs field φ(x).
Another set is provided by eigenstates ζ = ξα of the covariant Laplacian, where

(−DiDi)xyξα(y; U) = λαξα(x; U)

and

(−DiDi)xy =
3∑

k=1

[2δxy − U2
k (x)δy,x+k̂ − U∗2

k (x− k̂)δy,x−k̂] .

Because the covariant Laplacian depends only on the squared link variable, the
ξα(x; U), which we have elsewhere referred to as “pseudomatter” fields transforming
like q = 2 charged matter fields, with the one difference that, unlike matter fields, they
do not transform under a global (constant) gauge transformation. Pseudomatter fields
depend nonlocally on the gauge fields, and the low-lying eigenstates and eigenvalues
of the covariant Laplacian, which is a sparse matrix, can be computed numerically via
the Arnoldi algorithm.
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Four lowest-lying Laplacian eigenstates + Higgs field

In our calculation we make use of the four lowest-lying Laplacian eigenstates and the Higgs field to
construct the Φα,

the four lowest lying Laplacian eigenstates,

ζi(x) =
{
ξi(x) i = 1, 2, 3, 4
φ(x) i = 5

In general the five states Φα(R) are non-orthogonal at finite R. Of course φ(x) is a q = 2 matter field,
rather than pseudomatter field. We express the operator Qα in terms of a non-local operator Vα(x, y; U)

Qα(R) = ψ(x)Vα(x, y; U)ψ(y)

Vα(x, y; U) = ζα(x; U)ζ∗α(y; U) ,

and define the Euclidean time evolution operator of the lattice abelian Higgs model, T = e−(H−E0), which
is the transfer matrix multiplied by a constant eE0 where E0 is the vacuum energy, evolving states for one
unit of discretized time.
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Calculations of the Transfer Matrix

[T ] is the matrix element in the five non-orthogonal states Φα, with the matrix of overlaps, [O],
of such states.

[T ]αβ = 〈Φα|e−(H−E0)|Φβ〉 = 〈Q†α(R, 1)Qβ(R, 0)〉
[O]αβ = 〈Φα|Φβ〉 = 〈Q†α(R, 0)Qβ(R, 0)〉

We obtain the five orthogonal eigenstates of [T ]αβ in the subspace of Hilbert space spanned by
the Φα by solving the generalized eigenvalue problem.

[T]αβυ
(n)
β = λn[O]αβυ

(n)
β ,

with eigenstates,

Ψn(R) =
5∑

α=1

υ(n)
α Φα(R)

and ordered such that λn decreases with n.
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Euclidean time evolution

Consider evolving the states Ψn in Euclidean time,

Tnn(R, T) = 〈Ψn|e−(H−E0)T |Ψn〉
= υ∗(n)

α 〈Φα|e−(H−E0)T |Φβ〉υ(n)
β

= υ∗(n)
α 〈Q†α(R, T)Qβ(R, 0)〉υ(n)

β ,

where Latin indices indicate matrix elements with respect to the Ψn rather than the Φα, and
there is a sum over repeated Greek indices.

To calculate this expression, we define timelike q = 2 Wilson lines of length T,

P(x, t, T) = U2
0(x, t)U2

0(x, t + 1)...U2
0(x, t + T − 1) .

After integrating out the massive fermions, whose worldlines lie along timelike Wilson lines,
we have

〈Q†α(R, T)Qβ(R, 0)〉 = 〈Tr[V†α(x, y; U(t + T))P†(x, t, T)Vβ(x, y; U(t))P(y, t, T)]〉 .
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Transfer matrix, a sum of exponentials

On general grounds, Tnn(R, T) is a sum of exponentials

Tnn(R, T) = 〈Ψn(R)|e−(H−E0)T |Ψn(R)〉

=
∑

j

|c(n)
j (R)|2e−Ej(R)T ,

where c(n)
j (R) is the overlap of state Ψn(R) with the j-th energy eigenstate of the abelian Higgs

theory containing a static fermion-antifermion pair at separation R, and Ej(R) is the
corresponding energy eigenvalue minus the vacuum energy.

Numerics
I work in the Higgs region at β=3 and γ=0.5, the photon mass is determined from the
plaquette-plaquette correlator to be 1.57 in lattice units.

Kazue Matsuyama (SFSU) LATTICE 2021 10 / 21



The energies En(R) for n = 1, 2

The energies En(R) for n = 1, 2 are also obtained by fitting the data for Tnn(R, T) vs. T ,
at each R, to an exponential falloff.
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An example of these fits at R = 6.93 on a 164 lattice
with couplings β = 3, γ = 0.5. Fitting through the
points at T = 2− 5, with E1 = 0.2929(6) and
E2(R) = 1.01(1)
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Energy expectation values En(R) vs. R for n = 1 and
n = 2, obtained from a fit to a single exponential.
The data and errors were obtained from ten
independent runs, each of 77,000 sweeps after
thermalization, with data taken every 100 sweeps,
computing Tnn from each independent run.
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Second stable excited state

...see if there is any indication of a second stable excited state
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T33(R, T) vs. T at fixed R = 6.93. The fit shown is to the sum of exponentials

T33(R, T) ≈ a1(R)e−E1T + a2(R)e−E2T + a3(R)e−E3T ,

where E1 = 0.29,E2 = 1.02 are taken from the previous fits. A sample fit, again at R = 6.93, is shown.
Obviously one cannot be very impressed by a four parameter fit through a handful of data points. A sample
fit, again at R = 6.93 is shown.
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Excitation spectrums

the values of E1,E2,E3, together with the one photon threshold
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The one photon threshold is simply E1 + mphoton = 0.29 + 1.57(1) = 1.86(1) in lattice units. The
important observation is that E2(R) lies well below this threshold, which implies that the first excited state
of the static fermion-antifermion pair is stable. The second point to note is that E3(R) seems to lie above or
near the one photon threshold. The indications are that there is no second stable excited state. States above
the first excited state most likely lie above the threshold, and are probably combinations of the ground state
plus a massive photon.
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Conclusions

We have presented lattice Monte Carlo evidence for the existence of a stable excitation of the
quantized fields surrounding isolated static charges, in the Higgs phase of the q = 2 abelian
Higgs model in D = 4 spacetime dimensions:

Some obvious next questions,

1 excitations of the type seen in the abelian Higgs model would also be found in
non-relativistic models of that kind (application to SC theory)

2 how they might be observed experimentally in a real superconductor?

3 whether heavy fermions (or even light fermions) have a spectrum of excitations in the
electroweak sector of the Standard Model? (a further question)
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Numerical Results:

Where do we start looking for such excitation spectrum in the phase diagram of q = 2 Abelian
Higgs theory?

We are interested in determining En(R) in the
Higgs phase and, because the calculation
involves fitting exponential decay, we would
like both the mass of the photon and the
energies En(R) to be not much larger than unity
in lattice units. For this reason we choose to
work at the edge of the phase diagram shown
just above the massless-to-Higgs transition line
at β = 3, γ = 0.5.
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Photon mass

We compute the photon mass from the gauge invariant on-axis plaquette-plaquette correlator with the same
µ ν orientation

G(R) =

〈
Im[Uµ(x)Uν(x + µ̂)U∗µ(x + ν̂)U∗ν(x)]× Im[Uµ(y)Uν(y + µ̂)U∗µ(y + ν̂)U∗ν(y)]

〉
,

where y = x + Rk̂, and k̂ is a unit vector orthogonal to the µ̂, ν̂ directions.
The result for the β = 3, γ = 0.5 parameters is
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exponential fit From an exponential fit, disregarding the initial

points, we find a photon mass of mγ = 1.57(1) in
lattice units. Data was obtained on a 164 lattice with
1,600,000 sweeps and data taken every 100 sweeps.
We have checked that if the calculation is done just
below the transition, in the massless phase, then G(R)
is fit quite well by a 1/R4 falloff, as expected.
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Any finite size effects?

To check a finite size effect we can make the same computation, with the same number of sweeps, only on a
124 lattice.
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An example of these fits at R = 6.93 on a 164 lattice
with couplings β = 3, γ = 0.5. Fitting through the
points at T = 2− 5, with E1 = 0.2929(6) and
E2(R) = 1.01(1)
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Fitting result at R = 6.93 on a 124 through the points
T = 2− 4 yields E2(R) = 0.99(2). At R = 5 point
lies a little above the straight line fit, and again this
effect is seen at all R indicating that the deviation of
the last data point from the fit to the other points is
probably a finite size effect.
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E1,E2 obtained using nev = 2 and nev = 4 Laplacian eigenstates.

compare E1 and E2 values obtained from using nev = 2 Laplacian eigenstates with the values obtained
using nev = 4 Laplacian eigenstates,
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There is not much difference in the E2 values, at least for R ≥ 3, and the E1 values cannot even be
distinguished in the plot.
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some more details of a finite size effect

the numerical solution by the standard Matlab eig routine (ultimately derived from LAPACK) shows a small
O(10−3) but non-negligible deviation from this orthogonality condition, 〈Ψi|Ψj〉 = δij.
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Energy expectation values of 164 lattice. E2 is
obtained from fits to data points in the range
T = 3− 6, rather than T = 2− 5. the values of E2
obtained from a fit in the T = 3− 6 interval. In
general the E2 values cluster around E2 = 1, as in the
previous fit. But there are large error bars for some of
the points, especially at the lower R values, and
significant deviations from E2 ≈ 1
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T22(R) vs. T at R = 3.16. The reason for a
discrepancy between a fit of data points at T = 2− 5,
and T = 3− 6 is apparent. both the last data points
for T22 at T = 7 and the next-to-last data point at
T = 6 deviate very significantly from the fit in the
T = 2− 5 range. We are inclined to attribute both
deviations to finite size effects, which seem especially
apparent at lower R.
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Energy expectation values E1,E2 vs. R at R > 3, obtained on a 124 lattice.

...E1,E2 obtained on a 124 lattice volume results,
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As in the larger volume, the data for E2 clusters around E2 ≈ 1, albeit with a few outliers. These values,
however, are obtained from a fit through only three data points at T = 2, 3, 4, and also the χ2 values of
these fits tend to be significantly larger than unity, indicating a possible underestimate of the error bars.
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