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Introduction

QED in external electromagnetic fields has applications in Laser
Physics, Accelerator physics, Astrophysics and Condensed Mat-
ter physics.

While electrons in external Electric Fields exhibit some of the
more interesting phenomena (from our perspective) such as
the Sauter-Schwinger effect – electron-positron production in
(strong) electric fields – the introduction of external electric fields
leads to a complex action making standard simulation tech-
niques inapplicable.

Hence for our first project we will consider QED in external mag-
netic fields, where the action remains real.

Classically charged particles in a magnetic field have helical tra-
jectories around magnetic field lines. This means that while the
motion in the direction of the magnetic field is free, that in the
plane transverse to the magnetic field is bound.

Quantum mechanics forces the motion in this transverse plane
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to be quantized into a set of discrete transverse energy levels –
the Landau levels.

Increasing the magnetic field decreases the transverse spread
of such orbits and increases the energy gap between these lev-
els until eventually all electrons will occupy the lowest level. This
leads to the dimensional reduction from 3+1 to 1+1.

We simulate lattice QED in a constant external magnetic field
using the RHMC method developed for lattice QCD. Since QED
does not have an ultra-violet completion, we consider it as an
effective field theory.

While the only chiral symmetry in QED is broken by the anomaly,
(finite order) perturbative QED exhibits some of the properties
of a theory with an unbroken chiral symmetry. In the limit of
zero bare mass, the renormalized mass also approaches zero.
Similarly, ⟨ψ̄ψ⟩ → 0 in this limit.
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Free electrons in a constant external magnetic field B also re-
main massless in the limit of zero bare mass, and again
⟨ψ̄ψ⟩ → 0. However, there is an extra term m|eB| ln

(
|eB|
m2

)
in this approach, which is clearly non-perturbative.

When the effects of QED are included, approximate methods
(Schwinger-Dyson, Bethe-Salpeter,...) indicate that the electron
develops a dynamical mass

mdynamical ∼
√
|eB| exp

(
−
π

2

√
π

2α

)
which is non-perturbative and should make a related contribu-
tion to ⟨ψ̄ψ⟩, which will not vanish as m → 0.

In our simulations we try to determine whether such a contribu-
tion to ⟨ψ̄ψ⟩ exists. Because mdynamical is predicted to be so
small – ∼ 10−10 ×

√
eB – for α = 1/137, we are also run-

ning at stronger coupling – α = 1/10 – where mdynamical ∼
10−3 ×

√
eB by the above, and multi-loop contributions are
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expected to make this even larger.

So far our results are suggestive but inconclusive.

We are also storing configurations on which to measure the
asymmetries and screenings of coulomb potentials, which are
predicted to occur for QED in strong external magnetic fields.
These should be large enough to be measurable in our simula-
tions at a physical α value.
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Lattice QED in an external Magnetic Field

We simulate using the non-compact gauge action

S(A) =
β

2

∑
n,µ<ν[Aν(n+µ̂)−Aν(n)−Aµ(n+ ν̂)+Aµ(n)]2

where n is summed over the lattice sites and µ and ν run from 1
to 4 subject to the restriction. β = 1/e2. The functional integral to
calculate the expectation value for an observable O(A) is then

⟨O⟩ =
1

Z

∫ ∞

−∞
Πn,µdAµ(n)e

−S(A)[detM(A+Aext)]
1/8O(A)

where M = M†M and M is the staggered fermion action in the
presence of the dynamic photon field A and external photon field
Aext describing the magnetic fieldB (or rather eB). M is defined
by

M(A+Aext) =
∑

µDµ(A+Aext) +m
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where the operator Dµ is defined by

[Dµ(A+Aext)ψ](n) =
1

2
ηµ(n){ei(Aµ(n)+Aext,µ(n))ψ(n+ µ̂)

− e−i(Aµ(n−µ̂)+Aext,µ(n−µ̂))ψ(n− µ̂)}
and ηµ are the staggered phases. Note that this treatment of the
gauge-field–fermion interactions is compact and so has period 2π
in the gauge fields.

We implement the RHMC simulation method of Clark and
Kennedy, using a (20, 20)rational approximation to M−1/8 and
(12, 12) rational approximations M±1/16. To account for the range
of normal modes of the non-compact gauge action we vary the tra-
jectory lengths τ over the range

π

2
√
β

≤ τ ≤
4π√

2β(4 −
∑
µ cos(2π/Nµ))

, of the periods of the modes of this gauge action.
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Aext are chosen in the symmetric gauge as

Aext,1(i, j, k, l) = −
eB

2
(j − 1) i ̸= N1

Aext,1(i, j, k, l) = −
eB

2
(N1 + 1) (j − 1) i = N1

Aext,2(i, j, k, l) = +
eB

2
(i− 1) j ̸= N2

Aext,2(i, j, k, l) = +
eB

2
(N2 + 1) (i− 1) j = N2

while Aext,3(n) = Aext,4(n) = 0. In practice we subtract the
average values of Aext, µ from these definitions. This choice
produces a magnetic field eB in the +z direction on every 1, 2
plaquette except that with i = N1, j = N2, which has the
magnetic field eB(1 − N1N2). Because of the compact nature
of the interaction, requiring eBN1N2 = 2πn for some integer
n = 0, 1, ......N1N2/2 makes the value of this plaquette indistin-
guishable from eB. Hence eB = 2πn/(N1N2) lies in the interval
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[0, π].
One of the observables we calculate is the electron contribu-

tion to the effective gauge action per site −1
8V trace[ln(M)]. For

ln(M) we use a (30, 30) rational approximation to the logarithm.
Here we use the Chebyshev method of Kelisky and Rivlin. While
this has worse errors than a Remez approach, it preserves some
of the properties of the logarithm itself, and is applicable on the
whole complex plane cut along the negative real axis.

9



Simulations and results

We are simulating QED (1-flavour) on a 364 lattice with elec-
tron mass m = 0.1 and m = 0.2 in an external magnetic field
B. Most of our simulations are performed at α = 1/137. Note
that with these choices the momentum cutoff is so low that the
difference between the bare(lattice) coupling and mass and the
renormalized coupling and mass are at most a few percent, and
are neglected.

We test the range of applicability of the lattice approach by first
calculating

⟨ψ̄ψ⟩ =
1

4V
trace[M−1(Aext)]

as a function of allowed eB values on the lattice, and comparing it
to the known continuum result:

⟨ψ̄ψ⟩ = ⟨ψ̄ψ⟩|eB=0+
meB

4π2

∫ ∞

0

ds

s
e−sm

2
[
coth(eBs) −

1

eBs

]
.

10



Next we calculate

Lf = −
1

4V
ln{det[M(Aext)]}

= −
1

4V
trace{ln[M(Aext)]}

on the lattice, and compare it with the known continuum result:

Lf = Lf |B=0 +
(eB)2

24π2

∫ ∞

0

ds

s
e−m

2s

+
eB

8π2

∫ ∞

0

ds

s2
e−m

2s
[
coth(eBs) −

1

eBs
−
eBs

3

]
.

In both cases we take the lattice values for the divergent parts of
these observables in their continuum versions.

Figure 1 shows the comparison between the lattice and con-
tinuum values for ⟨ψ̄ψ⟩ for free electrons in a constant external
magnetic field B for electron masses m = 0.1 and m = 0.2.
Note that the agreement between lattice and continuum results is
reasonable for eB ≲ 0.63 or π/5. The agreement is better for
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larger lattices, but the range of Bs where the agreement is good
is no better.

Figure 2 compares the lattice and continuum values of the
fermion contribution to the effective action from free electrons in a
constant external magnetic field Lf for electron masses m = 0.1
and m = 0.2. Again there is reasonable agreement between lat-
tice and continuum results over a limited range of B values.
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Figure 1: Free-electron ⟨ψ̄ψ⟩ as functions of eB, comparing the continuum and
lattice results for a) m = 0.1 and b) m = 0.2.
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Figure 2: Free-field −Lf as functions of eB, comparing the continuum and
lattice results for a) m = 0.1 and b) m = 0.2.
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We simulate QED with one electron in a (strong) constant
magnetic field on a 364 lattice with periodic boundary conditions
at α = 1/137 for a range of (allowed) values of eB from 0 to eB
sufficiently large that discretization errors become appreciable, at
electron masses m = 0.1 and m = 0.2. At each eB and m, we
run for 12500 trajectories, storing a gauge configuration every 100
trajectories for further analysis.

Figure 3 shows ⟨ψ̄ψ⟩ from these runs, which demonstrates
that the main effect of QED is to increase the magnitudes of ⟨ψ̄ψ⟩.
Following the trend of the free field values, it increases as eB in-
creases.

Figure 4 shows the effective action Lf from these runs. Here
QED reduces the magnitude of the effective action whose eB de-
pendence is similar to that of the free field case, i.e. it decreases
as eB increases.
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Figure 3: Electron ⟨ψ̄ψ⟩ as functions of eB, comparing the continuum and
lattice results for a) m = 0.1 and b) m = 0.2.
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Figure 4: −Lf as functions of eB, comparing the free field (α = 0) and QED
(α = 1/137) results for a) m = 0.1 and b) m = 0.2.
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We are interested to know if the electron develops a dynamical
mass. If so this should feed back into ⟨ψ̄ψ⟩, which should no
longer vanish in the m → 0 limit. However, since it has been
estimated that for α = 1/137, eB ∼ 1 the dynamical electron
mass will be ∼ 10−10, which is unobservable, we have performed
simulations at α = 1/10 where the dynamical electron mass is
estimated to be ∼ 10−3 for eB ∼ 1 and could well be larger
since this is in the regime where multiloop diagrams are at least
as important as 1-loop diagrams. We are planning simulations at
α = 1 where the maximum dynamical mass should be ∼ 0.1.

Figure 5 shows ⟨ψ̄ψ⟩ at m = 0.2, m = 0.1, and a linear
extrapolation to m = 0, for α = 0, α = 1/137, and α = 1/10.
The 3 eB values for the lower 2 αs are 0, (2π/362) × 50 =
0.2424... and (2π/362) × 100 = 0.4848.... For the highest α,
the 2 eB values are 0 and (2π/362) × 100 = 0.4848....
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Figure 5: ⟨ψ̄ψ⟩ as functions of mass for α = 0, α = 1/137, and α = 1/10,
and various eBs.
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We know that for α = 0, ⟨ψ̄ψ⟩ vanishes in the m = 0 limit.
For α = 1/137, the linear extrapolation gives results similar to
those at α = 0, indicating that ⟨ψ̄ψ⟩ either vanishes or becomes
very small in this limit. Forα = 1/10 the situation is less clear, and
it will need smaller mass simulations to determine the curvature of
these fits. Larger α will help.
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Figure 6: ⟨ψ̄ψ⟩ as a function of mass m for free electrons and no magnetic
field. Note how small the finite lattice size effects are.
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Difficulties to be overcome to extend this to include the Electric Field

Contour rotation to imaginary time and imaginary A4 leaves
Aext,4 real. Hence the euclidean action is complex, so tradi-
tional simulation methods cannot be applied.

For QED, the pure gauge action is just a collection of harmonic
oscillators, so if one applies complex-langevin simulations, the
real trajectory is attractive, unlike in QCD where the real tra-
jectory is repulsive. It remains to be seen if this property sur-
vives the addition of real fermion dynamics (QED without exter-
nal electric fields.

Can one analytically continue from imaginaryAext,4 with its real
euclidean action to real Aext,4 with its complex action?

The rational approximation we use for ln does work for complex
arguments. Can multimass inversions be performed as for pos-
itive definite matrices, or will we need to perform 30 separate
inversions?

Because the exponential interactions of the gauge fields with
22



fermions are now exponentials of real numbers, one cannot use
periodicity to simplify periodic boundary conditions. What is the
best way to implement boundary conditions?
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Discussions and conclusions

• We simulate lattice QED in a constant background magnetic
field at close to the physical value of α = e2

4π at m = 0.1 and
m = 0.2 in lattice units. These simulations should enable us to
access some of the effects due to Landau levels, which result
in an effective dimensional reduction from 3 + 1 dimensions to
1+1 dimensions, with various non-perturbative consequences.

• ⟨ψ̄ψ⟩ is measured as a function of B to test whether it van-
ishes in the m → 0 limit. Comparing it with the behaviour for
free electrons at the same values of the magnetic field, we con-
clude that we see no evidence of a non-zero limit, which would
be evidence for the production of a dynamical electron mass
proportional to

√
eB.

• However, the predicted value for such a non-perturbative mass
is far too small to be observed for the values of eB accessible
to these simulations at the physical value of α. We therefore
simulate at an unphysically large coupling α = 1/10. However,
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with only 2 masses we can only perform a linear extrapolation
to m = 0 which does not allow us to account for curvature in
this extrapolation.

• We are therefore starting simulations at an even larger coupling
(α = 1) where one can hope that the effect will be large. At
this coupling, as well as at α = 1/10 we hope to also simulate
at an even smaller mass, to help with the extrapolation to m=0.
However, this will require a larger lattice – 644 or 724 – which
will be expensive.

• During our simulations we have stored 125 configurations for
each value of m, eB and α. We will use these to examine the
effects the magnetic field has on coulomb interactions between
electron-positron pairs. These include breaking of the rotational
symmetry and screening. These effects should be measurable
even at physical α values.

• We will also measure the electron propagator on stored con-
figurations. At large α, this should enable direct measurement
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of any (non-perturbative) dynamical electron mass to check the
predictions of calculations using approximations having less con-
trollable systematic errors.

• We plan to perform simulations of QED in external Electric Fields,
where the Sauter-Schwinger effect will manifest itself by the ef-
fective gauge action generated by the electron fields developing
an imaginary part, heralding the production of electron-positron
pairs from the vacuum.

These simulations were performed on the Bebop Cluster at
ANL, Cori at NERSC using an ERCAP(DOE) allocation, and using
XSEDE(NSF) allocations on Expanse at UCSD, Bridges-2 at PSC
and Stampede-2 at TACC.

One of us (DKS) would like to thank G. T. Bodwin for helpful
discussions, while JBK would like to acknowledge conversations
with A. Shovkovy and V. Yakimenko.
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