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Motivation

We propose a lattice formulation of fermion in a curved space,
embedding a curved domain-wall into a flat square lattice.

Embed as
domain-wall
(Nash [1956]) 0

- Y "

Euclidean lattice space

Curved space

Cf. Brower et al. [2017] and Ambjgrn et al. [2001] studied on triangle lattices.



Embedding a curved space

For any n-dim. Riemann space (M™, g), there is an embedding
f:M"™ — R™ (m > n) such that M™ is identified as

xli:fﬂ(i»l,...,j}”)(uzlj,,_’m) (1)
z# : Cartesian coordinates of R™
' : coordinates of M™

and the metric ¢ is induced as

Zaf” oL @)

0t Opw 0FJ

Therefore (M™, g) can be identified as a submanifold of R™.

cf. Nash [1956].



Our Work

E=0.09257927394443875

We find that

» Edge states are localized
at the curved domain-wall
(S* or S? in this work),

» They feel gravity (through
induced spin connection).

Cf. Similar studies in condensed matter physics [Imura et al. [2012],
Parente et al. [2011]].
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Plan of this section

We embed an S domain-wall into R? and study

+ Spectrum of Dirac operator,
» Edge states,
* Their effective Dirac op.

both in the continuum and on the lattice.

Fig 1: Continuum Case
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Fig 2: Lattice case




Dirac op in Continuum case

The domain-wall is given by y Y

eA(r) =sign(r — o)

_ -1 (r<mp) 0 e
1 (r=m)

and the Dirac op. is

@)



Edge states

When M is large enough, edge
states are

Y
¢E,j - M o= Mir—ro| eti—3)
edge =V 4oy Gili+1)0 )

They are "chiral" eigenstates of
Ynormal =01 c0s 0 + o2 sin
B 0 eﬂ'e
\e? o0 )’

with eigenvalue +1.
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Fig 3: Edge state when
M = 5,7’0 =8
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Effective Dirac op

Curved domain-wall

Cf. flat S*

Fig 4: Eigenvalue of edge states
atM =5ry=1

Effective Dirac op on the chiral
edge states is

1/ 0 1
Ho = —(—is 4= 4
i m(’ae 2 “)
5 13
E=0 (j 3=y >

The 1 is identified as the
induced spin connection.

Gravity appear as the gap of the spectrum
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Lattice domain-wall fermion

Let (Z/nZ)? is a 2-dim. lattice. The
domain-wall is given by

() — -1 (|z| < ro)
@=V1 (elzr)

+6M>,

(Vip)e =, 15 — Yo, (V)2 = thn — 1, _;

and the (Wilson) Dirac op is

v Ly
neo( £ [ et

i=1,2

where periodic boundary condition is
imposed in the = and y direction.

B

crmwsnauee BEREREES

012345676 91001121314152617 1819
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Fig 5: Edge state

Cf. Kaplan [1992] studied a flat domain-wall in R?7+1
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Continuum Limit
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Fig 6: the Dirac eigenvalue spectrum
normalized by the circle radius when
Ma = 07, To = L/4

L:Lattice size
a:lattice spacing
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Relative Error
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Fig 7: error = ’Ei"” — B /ES" is a relative
error of Ey /o betheen co?ﬁinujm and lattice
when ry = £. a is lattice distance and

n — oo means continuum limit.

Finite a scaling is not

monotonic but
decreasing.
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S? domain-wall

The domain-wall is given by

e(r) =sign(r — o)
) =1 (r<mo)
N 1 (r>ro) ’
and the Dirac op is

) Me 090;
N () _ J
H=x (’Yjawj +M6> = (—ajaj —Me)

Y=0301,% =01 ®0’

(7)

16



Edge states and Their spectrum

In the large M limit, edge states are

oz (£)
r 3,43

—M|r—mr (£)
+Ejjs ., | M e MIr=rol ( X;,js )
b

wedge - 2 r

Edge states are "chiral" states of

3 3 x-o
7 4 0
normal ‘= E 771 = <w.g 6 )
=1

with eigenvalue +1.
Effective Dirac op is obtained as

1
Hs2 = *(O'L—Fl),
To

which acts on a two-component spinor y.
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Effective Dirac op and Dirac op. of 5

Effective Dirac op is obtained as

He = ~(o-L+1) (10)
o
e . /p
2Sln(*)
augetrsf. by s= [ . 2
e e (elfsm@) i% cos(3) )

g _@ 8 1 g_cosﬁag

— ffjpSQ, Spin conn. of §? (11)
70

Edge states feel gravity of the spherical domain-wall

Cf. [Takane and Imura [2013]].
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Euler number of 5?2

We get the spin connection

0 1
WA = — CO,S o109 sin 0dp = ——iog cos Odo, (12)
2sin @ 2
So the Levi-Civita connection w and Riemann curvature R is
given by
B 0 —cosfd¢
N (cos 0do 0 ) (13)

R dw+ w? ( 0 ?d@ (14)
—_— = = e
2 2 sin

T T —sn8dhdg 0

Euler class of 52

The Euler number of S2 is identified as

X(S?) = /52 S;nededgb — 9. (15)

s
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Induced gravity makes a gap in the spectrum.

=3 e0e000e ]
N 2 eeee Eigenvalue
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ee /=3
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(17)
Fig 8: Spectrum of edge states when
M = 5,7"0 = 1l

(Euler number of S%) = 2
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Lattice Domain-wall Fermion

Let (Z/nZ)3 is a 3-dim. lattice. The
domain-wall is given by

{ —1 (|z| < ro)

6('%.) = )

L (Jz] = ro)
and the (Wilson) Dirac op is

vigvt »
H=73<Z |:’Y7;127'—2V{V?

i=1,2

+6M>,

(V{"l’)x = ¢'z+; - ¢ma (ng)a: = '¢m - d)z_g
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Fig 9: S? Domain-wall on



Edge states
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Fig 10: Edge state localized at S? when
M=0.7 and lattice size = 16>
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Fig 11: Sliceat 2 =7
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Spectrum in Lattice case
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Fig 12: Spectrum of edge states at S? when n = 16, M = 0.7.

It reproduces the spectrum of continuum!
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Summary

We have considered S' and S? as a curved domain-wall on
square lattice. We have confirmed that

 Chiral edge-localized states appear at the domain-wall.
* They feel gravity through the induced spin connection.
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Outlook

» Systematics in the continuum limit
+ Gravitational anomaly inflow.

* Index theorem with a nontrivial curvature.
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Effective Dirac op

We consider a normalized edge state as

x(0)
e x(0)

00 2
/ drorp? =1, / doxTy =1 (19)
0 0

Yedge :P(T)< ): x(8 +2m) = x(0) (18)

and let 2rp* — 6(r — r9) (M — oo). Then we obtain

To 00 2

[AVAVAVAVAVAVAVAVAVAV Vel
Effective Dirac op Hg: !!
The factor % means induced spin connection.

o 1( 0 1
0



Effective Dirac op

We consider a normalized edge state as

0
¢edge = p(r) (g;(’z;)) (21)
/000 drr22p2 = Il /52 XTX = Il (22)

and we assume 272p? — §(r — o) (M — 00). Thus
& 1
/dx?’l/)ldgeﬂwedge = / dr2r2p2/ x'=(e-L+1)x
0 S2 T

— XTi(a'-L—i—l)X (M — o0), (23)
S2 o

AVAVAVAVAVAVAVAVAV Vo
Effective Dirac op Hg2 !!
where L is an orbital angular momentum.



Effective Dirac op and Dirac op. of 5

The gauge transformation using

e—i% cos(g) _emi% sin(g)
9= i .10 i ) (24)
e’z sm(§) e’z cos(i)
changes y — s~ 'y and
H5’2 —)S_le’zS
9 i 0 1 cos @
_1 5 % _09+51n9% 2 sin 6
- 7 1 cos 6
To %J’_sine%—’—isine 0
o3 0 n 1 0 cosf
=— (o= 4oy —=—————010
o 190 2 sinf ¢ 2sinf 172
AN\N\NNNNNNNNA
- ?DSQ. Spin conn. of 2 (25)
0

Edge states are affected by the spin connection of the spherical
domain-wall [Takane and Imura [2013]].



Goal

Flat space
Embed S!, 5% into a square lattice. /= Ordinary lattice theory

ANNN~ i -
Curved domain-wall R

l Edge state

» Edge states appear !

Curved Space

» They feel gravity !




Motivation

It is too difficult to consider a lattice theory on a curved space.
If we use

» A square lattice
— A curved space can NOT
be approximated by it.

+ Triangulation [Ambjarn
et al. [2001]]
—Lattice regularization is
different from of lattice
gauge theory.

Fig 13: Triangulation of a toy'

'https://12px.com/blog/2014/02/delaunay/



Main result

» Edge states appear at the curved domain-wall,

» They feel gravity or curvature through the induced spin
connection.

Cf. Similar studies in condensed matter physics.[Imura et al.
[2012], Parente et al. [2011]].



Domain-wall and edge states

If the sign of mass is flipped as

(xr <0)

1
e(x):{ 1 (z>0)"

then localized states appear at

x=0.

Fig 14: Edge state localized at the
domain-wall.
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