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Motivation

We propose a lattice formulation of fermion in a curved space,
embedding a curved domain-wall into a flat square lattice.

Euclidean lattice space

Curved space

Embed as
domain-wall

(Nash [1956])

Cf. Brower et al. [2017] and Ambjørn et al. [2001] studied on triangle lattices.
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Embedding a curved space

For any n-dim. Riemann space (Mn, g), there is an embedding
f :Mn → Rm (m≫ n) such that Mn is identified as

xµ = fµ(x̃1, · · · , x̃n) (µ = 1, · · · ,m) (1)(
xµ : Cartesian coordinates of Rm

x̃i : coordinates of Mn

and the metric g is induced as

gij =
∑
µν

∂fµ

∂x̃i
δµν

∂fν

∂x̃j
. (2)

Therefore (Mn, g) can be identified as a submanifold of Rm.

cf. Nash [1956].
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Our Work

We find that

• Edge states are localized
at the curved domain-wall
(S1 or S2 in this work),

• They feel gravity (through
induced spin connection).

Cf. Similar studies in condensed matter physics [Imura et al. [2012],

Parente et al. [2011]].
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Plan of this section

We embed an S1 domain-wall into R2 and study

• Spectrum of Dirac operator,
• Edge states,
• Their effective Dirac op.

both in the continuum and on the lattice.

O x

y

−M

+M

Fig 1: Continuum Case Fig 2: Lattice case
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Dirac op in Continuum case

The domain-wall is given by

εA(r) =sign(r − r0)

=

{
−1 (r < r0)

1 (r ≥ r0)
, O x

y

−M

+M

and the Dirac op. is

H = σ3

∑
i=1,2

(
σi

∂

∂xi

)
+Mε


=

(
Mε e−iθ( ∂∂r −

i
r
∂
∂θ )

−eiθ( ∂∂r +
i
r
∂
∂θ ) −Mε

)
.

(3)
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Edge states

When M is large enough, edge
states are

ψE,j
edge ≃

√
M

4πr
e−M|r−r0|

(
ei(j−

1
2
)θ

ei(j+
1
2
)θ

)
.

They are "chiral" eigenstates of

γnormal :=σ1 cos θ + σ2 sin θ

=

(
0 e−iθ

eiθ 0

)
,

with eigenvalue +1.

Fig 3: Edge state when
M = 5, r0 = 1
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Effective Dirac op

Fig 4: Eigenvalue of edge states
at M = 5, r0 = 1

Effective Dirac op on the chiral
edge states is

HS1 =
1

r0

(
−i ∂
∂θ

+
1

2

)
(4)

E =
j

r0

(
j = ±1

2
,±3

2
, · · ·

)
.

(5)

The 1
2 is identified as the

induced spin connection.

Gravity appear as the gap of the spectrum
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Lattice domain-wall fermion

Let (Z/nZ)2 is a 2-dim. lattice. The
domain-wall is given by

ε(x) =

{
−1 (|x| < r0)

1 (|x| ≥ r0)
,

and the (Wilson) Dirac op is

H = σ3

∑
i=1,2

[
σi

∇f
i +∇b

i

2
−
r

2
∇f

i ∇
b
i

]
+ ϵM

,
(∇f

i ψ)x = ψx+î − ψx, (∇b
iψ)x = ψx − ψx−î

where periodic boundary condition is
imposed in the x and y direction. Fig 5: Edge state

Cf. Kaplan [1992] studied a flat domain-wall in R2m+1
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Continuum Limit

Fig 6: the Dirac eigenvalue spectrum
normalized by the circle radius when
Ma = 0.7, r0 = L/4.

L:Lattice size
a:lattice spacing
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Relative Error

Fig 7: error =
∣∣∣Econ

1
2

− E lat
1
2

∣∣∣/Econ
1
2

is a relative
error of E1/2 between continuum and lattice
when r0 = L

4 . a is lattice distance and
n→ ∞ means continuum limit．

Finite a scaling is not
monotonic but
decreasing.
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S2 domain-wall

The domain-wall is given by

ε(r) =sign(r − r0)

=

{
−1 (r < r0)

1 (r ≥ r0)
,

and the Dirac op is

H = γ0
(
γj

∂

∂xj
+Mε

)
=

(
Mε σj∂j

−σj∂j −Mε

)
(6)

γ0 = σ3 ⊗ 1, γj = σ1 ⊗ σj (7)
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Edge states and Their spectrum

In the large M limit, edge states are

ψ±E,j,j3
edge ≃

√
M

2

e−M|r−r0|

r

(
χ
(±)
j,j3

σ·x
r
χ
(±)
j,j3

)
,

E ≃
j + 1

2

r0

(
j =

1

2
,
3

2
, · · ·

)
Edge states are "chiral" states of

γnormal :=

3∑
i=1

xi

r
γi =

(
0 x·σ

r
x·σ
r 0

)
(8)

with eigenvalue +1.

Effective Dirac op is obtained as

HS2 =
1

r0
(σ ·L+ 1), (9)

which acts on a two-component spinor χ.
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Effective Dirac op and Dirac op. of S2

Effective Dirac op is obtained as

HS2 =
1

r0
(σ ·L+ 1) (10)

gauge trsf. by s =

(
e−i

ϕ
2 cos

(
θ
2

)
−e−i

ϕ
2 sin

(
θ
2

)
ei

ϕ
2 sin

(
θ
2

)
ei

ϕ
2 cos

(
θ
2

) )

s−1HS2s = −σ3
r0

(
σ1

∂

∂θ
+ σ2

(
1

sin θ

∂

∂φ

Spin conn. of S2

− cos θ

2 sin θ
σ1σ2

))
= −σ3

r0
/DS2 . (11)

Edge states feel gravity of the spherical domain-wall

Cf. [Takane and Imura [2013]].
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Euler number of S2

We get the spin connection

ω∆ = − cos θ

2 sin θ
σ1σ2 sin θdφ = −1

2
iσ3 cos θdφ, (12)

So the Levi-Civita connection ω and Riemann curvature R is
given by

ω =

(
0 − cos θdφ

cos θdφ 0

)
(13)

R

2π
=
dω + ω2

2π
=

 0

Euler class of S2

sin θ

2π
dθdφ

− sin θ
2π dθdφ 0

 (14)

The Euler number of S2 is identified as

χ(S2) =

∫
S2

sin θ

2π
dθdφ = 2. (15)
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Induced gravity makes a gap in the spectrum.

Fig 8: Spectrum of edge states when
M = 5, r0 = 1

Eigenvalue

E ≃ ±
j + 1

2

r0
(16)

Degeneracy

2j + 1 (17)

(Euler number of S2) = 2
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Lattice Domain-wall Fermion

Let (Z/nZ)3 is a 3-dim. lattice. The
domain-wall is given by

ε(x) =

{
−1 (|x| < r0)

1 (|x| ≥ r0)
,

and the (Wilson) Dirac op is

H = γ3

∑
i=1,2

[
γi

∇f
i +∇b

i

2
−
r

2
∇f

i ∇
b
i

]
+ ϵM

.
(∇f

i ψ)x = ψx+î − ψx, (∇b
iψ)x = ψx − ψx−î

Fig 9: S2 Domain-wall on
lattice

21



Edge states

Fig 10: Edge state localized at S2 when
M=0.7 and lattice size = 163

Fig 11: Slice at z = 7
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Spectrum in Lattice case

Fig 12: Spectrum of edge states at S2 when n = 16,M = 0.7.

It reproduces the spectrum of continuum!
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Summary

We have considered S1 and S2 as a curved domain-wall on
square lattice. We have confirmed that

• Chiral edge-localized states appear at the domain-wall.

• They feel gravity through the induced spin connection.
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Outlook

• Systematics in the continuum limit

• Gravitational anomaly inflow.

• Index theorem with a nontrivial curvature.
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Effective Dirac op

We consider a normalized edge state as

ψedge = ρ(r)

(
χ(θ)

eiθχ(θ)

)
, χ(θ + 2π) = χ(θ) (18)∫ ∞

0
dr2rρ2 = 1,

∫ 2π

0
dθχ†χ = 1 (19)

and let 2rρ2 → δ(r − r0) (M → ∞). Then we obtain∫
dxdyψ†

edgeHψedge →
∫ 2π

0

dθχ†

Effective Dirac op HS1 !!

1

r0

(
−i ∂
∂θ

+
1

2

)
χ (20)

The factor 1
2 means induced spin connection.



Effective Dirac op

We consider a normalized edge state as

ψedge = ρ(r)

(
χ(θ, φ)

x·σ
r χ(θ, φ)

)
(21)∫ ∞

0
drr22ρ2 = 1,

∫
S2

χ†χ = 1, (22)

and we assume 2r2ρ2 → δ(r − r0) (M → ∞). Thus∫
dx3ψ†

edgeHψedge =

∫ ∞

0
dr2r2ρ2

∫
S2

χ† 1

r
(σ ·L+ 1)χ

→
∫
S2

χ†

Effective Dirac op HS2 !!

1

r0
(σ ·L+ 1)χ (M → ∞), (23)

where L is an orbital angular momentum.



Effective Dirac op and Dirac op. of S2

The gauge transformation using

s =

(
e−iϕ

2 cos
(
θ
2

)
−e−iϕ

2 sin
(
θ
2

)
ei

ϕ
2 sin

(
θ
2

)
ei

ϕ
2 cos

(
θ
2

) ) (24)

changes χ→ s−1χ and

HS2 →s−1HS2s

=
1

r0

(
0 − ∂

∂θ + i
sin θ

∂
∂ϕ − 1

2
cos θ
sin θ

∂
∂θ + i

sin θ
∂
∂ϕ + 1

2
cos θ
sin θ 0

)

=− σ3
r0

(
σ1

∂

∂θ
+ σ2

(
1

sin θ

∂

∂φ

Spin conn. of S2

− cos θ

2 sin θ
σ1σ2

))
=− σ3

r0
/DS2 . (25)

Edge states are affected by the spin connection of the spherical
domain-wall [Takane and Imura [2013]].



Goal

Embed

Curved domain-wall

S1, S2 into a square lattice.

• Edge states appear !

• They feel gravity !



Motivation

It is too difficult to consider a lattice theory on a curved space.
If we use

• A square lattice
A curved space can NOT

be approximated by it.

• Triangulation [Ambjørn
et al. [2001]]

Lattice regularization is
different from of lattice
gauge theory. Fig 13: Triangulation of a toy1

1https://12px.com/blog/2014/02/delaunay/



Main result

• Edge states appear at the curved domain-wall,

• They feel gravity or curvature through the induced spin
connection.

Cf. Similar studies in condensed matter physics.[Imura et al.
[2012], Parente et al. [2011]].



Domain-wall and edge states

If the sign of mass is flipped as

ε(x) =

{
−1 (x < 0)

1 (x > 0)
,

then localized states appear at
x = 0.

xO

m

−m

Fig 14: Edge state localized at the
domain-wall.
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