Tensor renormalization group approach to (1+1)-dimensional Hubbard model

> Shinichiro Akiyama (Univ. of Tsukuba) in collaboration with Yoshinobu Kuramashi

Based on PRD104(2021)014054

LATTICE2021 Zoom/Gather@MIT 2021.7.27 (EDT)

Introduction

- $\sqrt{}$ The Hubbard model at finite density is an important toy model to understand the physics of strongly-correlated electrons, but it is very challenging to investigate numerically the model away from the half-hilling due to the sign problem
- \checkmark The TRG approach is expected to be useful to investigate the Hubbard model because **the TRG provides us a deterministic (not a stochastic) methodology, which is free from the sign problem**
- \vee TRG is very good at dealing with interacting fermions in the path-integral formalism because **the TRG can directly evaluate the Grassmann path integral itself without introducing any auxiliary scalar field**

Hubbard model in the path-integral formalism

 \checkmark Action of the $(d + 1)$ -dimensional Hubbard model

$$
S = \sum_{n} \epsilon \left[\bar{\psi}(n) \left(\frac{\psi(n+\hat{\tau}) - \psi(n)}{\epsilon} \right) - t \sum_{\sigma=1,\cdots,d} \left(\bar{\psi}(n+\hat{\sigma}) \psi(n) + \bar{\psi}(n) \psi(n+\hat{\sigma}) \right) \right] + \sum_{n} \epsilon \left[\frac{U}{2} \left(\bar{\psi}(n) \psi(n) \right)^{2} - \mu \bar{\psi}(n) \psi(n) \right]
$$

 \vee fermions are described by two-component Grassmann numbers

$$
\psi(n) = {\psi_{\uparrow}(n) \choose \psi_{\downarrow}(n)} \qquad \bar{\psi}(n) = (\bar{\psi}_{\uparrow}(n), \bar{\psi}_{\downarrow}(n))
$$

✔ **The action of the Hubbard model is quite similar with that of the NJL model** S. A. et al., JHEP01(2021)121

 \checkmark We start from the (1+1)D case, exactly solved by the Bethe ansatz, to discuss the efficiency of the TRG approach to the (d+1)D Hubbard model w/ d>1

Algorithmic parameter dependence

with $U/t = 4$, $N_{\tau} = 2^{24}$, $N_{\tau} = 2^{12}$, $D \le 80$

 \checkmark Calculation by the Grassmann HOTRG (whose formulation is based on SA-Kadoh, arXiv:200507570 [hep-lat])

 \vee Imaginary time evolution + Space-time coarse graining (a similar treatment to previous HOTRG study of (2+1)D quantum Ising model in Xie et al, PRB86(2012)045139)

 $\epsilon = 10^{-4}$ is sufficiently small

Scaling w. r. t. D is discussed later

The model with $t = 0$ (one-site model)

with $U = 4$, $\epsilon = 10^{-4}$, $N_{\tau} = 2^{24}$

-> No hopping structure in the spatial direction

Imaginary time evolution restores the exact results

The model with $U = 0$ (free fermion model)

with $t = 1$, $\epsilon = 10^{-4}$, $N_{\tau} = 2^{24}$, $N_{\sigma} = 2^{12}$, $D = 80$

-> TRG approximately evaluates the tensor network contraction

The current approach (= imaginary time evolution + space-time coarse graining) restores the free-field solution

Number density with $U/t = 4$ with $\epsilon = 10^{-4}$, $D = 80$

The TRG allows us to investigate the system away from the half filling ($\mu = 2$) **Characteristic feature of the metal-insulator transition is captured by the TRG** Fitting of the number density with $U/t = 4$, $\epsilon = 10^{-4}$, $D = 80$

At $D = 80$, we obtain $\mu_c(D) = 2.698(1)$ and $\nu = 0.51(2)$

Exact solutions -> $\mu_c = 2.643$ **... and** $\nu = 0.5$

7/9

$D \rightarrow \infty$ limit

with $U/t = 4, \epsilon = 10^{-4}, D \le 80$

 $\mu_c(D \to \infty) = 2.642(05)(13)$ and *v* **are consistent with the exact values,** $\mu_c = 2.643$... and $\nu = 0.5$

Summary

- No difficulty to apply the TRG approach to fermions on a lattice
- (1+1)D Hubbard model is investigated within the path-integral formalism and the numerical results are consistent with the exact values **even away from half filling**
- The Grassmann ATRG algorithm is expected to be useful to investigate the higher-dimensional Hubbard model (in progress)

Appendices

Imaginary time evolution + space-time coarse-graining

 \blacktriangledown We have different hopping structures in temporal and spatial directions -> 2D tensor network is constructed by anisotropic local Grassmann tensors

Imaginary time evolution + space-time coarse-graining

$$
S = \sum_{n} \left[\bar{\psi}(n) \big(\psi(n + \hat{\tau}) - \psi(n) \big) - t\epsilon \sum_{\sigma = 1, \cdots, d} \left(\bar{\psi}(n + \hat{\sigma}) \psi(n) + \bar{\psi}(n) \psi(n + \hat{\sigma}) \right) \right]
$$

$$
+ \sum_{n} \epsilon \left[\frac{U}{2} \big(\bar{\psi}(n) \psi(n) \big)^{2} - \mu \bar{\psi}(n) \psi(n) \right]
$$

- \checkmark With sufficiently small ϵ , one has almost vanishing spatial interaction compared with the temporal interaction
- $\sqrt{}$ Temporal Decimation by the HOSVD works much better than spatial decimation