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Introduction

v The Hubbard model at finite density is an important toy model to understand
the physics of strongly-correlated electrons, but it is very challenging to
investigate numerically the model away from the half-hilling due to the sign
problem

Vv The TRG approach is expected to be useful to investigate the Hubbard model
because the TRG provides us a deterministic (not a stochastic) methodology,
which is free from the sign problem

Vv TRG is very good at dealing with interacting fermions in the path-integral
formalism because the TRG can directly evaluate the Grassmann path
integral itself without introducing any auxiliary scalar field
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Hubbard model in the path-integral formalism

V' Action of the (d + 1)-dimensional Hubbard model
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V fermions are described by two-component Grassmann numbers
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v The action of the Hubbard model is quite similar with that of the NJL model
S. A. et al., JHEP01(2021)121
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v We start from the (1+1)D case, exactly solved by the Bethe ansatz, to discuss
the efficiency of the TRG approach to the (d+1)D Hubbard model w/ d>1
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Algorithmic parameter dependence
with U/t = 4,N, = 22* N, = 212,D < 80

V Calculation by the Grassmann HOTRG
(whose formulation is based on SA-Kadoh, arXiv:200507570 [hep-lat])

v/ Imaginary time evolution + Space-time coarse graining

(a similar treatment to previous HOTRG study of (2+1)D quantum Ising model in Xie
et al, PRB86(2012)045139)
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e = 10~% is sufficiently small Scaling w. r. t. D is discussed later
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The model with t = 0 (one-site model)

-> No hopping structure in the spatial direction

withU = 4,6 = 1074, N, = 224

20

1.5

0.5

O TRG
— Exact

0.04

Imaginary time evolution restores the exact results
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The model with U = 0 (free fermion model)
witht =1, = 107% N, = 224 N, = 212,D = 80

-> TRG approximately evaluates the tensor network contraction

The current approach (= imaginary time evolution + space-time coarse graining)
restores the free-field solution
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Number density with U/t = 4

with € = 10_4,D = 80
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The TRG allows us to investigate the system away from the half filling (u = 2)
Characteristic feature of the metal-insulator transition is captured by the TRG



Fitting of the number density

with U/t = 4,e =107% D = 80
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At D = 80, we obtain u.(D) = 2.698(1) andv = 0.51(2)

Exact solutions -> u. = 2.643 ...andv = 0.5
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D — oo limit
withU/t = 4,e =107% D < 80

D 60 65 70 75 80 0o

fit range|[2.72,3.00] [2.70,3.00] [2.70,3.00] [2.69,3.00] [2.68,3.00] -

pe(D) | 2.720(3) 2.710(1) 2.7068(8) 2.701(1) 2.698(1) 2.642(05)(13)
v 0.49(3) 0.52(1) 0.50(2) 0.51(2) 0.51(2) -

p.(D - o) = 2.642(05)(13) and v
are consistent with the exact values,
U, =2.643 ..andv =0.5
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Summary

No difficulty to apply the TRG approach to fermions on a lattice

(1+1)D Hubbard model is investigated within the path-integral
formalism and the numerical results are consistent with the exact

values even away from half filling

The Grassmann ATRG algorithm is expected to be useful to investigate
the higher-dimensional Hubbard model (in progress)
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Imaginary time evolution + space-time coarse-graining

vV We have different hopping structures in temporal and spatial directions
-> 2D tensor network is constructed by anisotropic local Grassmann tensors

() O (D Imaginary time evolution
' by the HOTRG in advance
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OO
(2) Space-time coarse-graining
» space by the HOTRG




Imaginary time evolution + space-time coarse-graining
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0(e) 5 N Vv With sufficiently small €, one has almost

w/eKL1 vanishing spatial interaction compared with
o I the temporal interaction

time v Temporal Decimation by the HOSVD works
O Q much better than spatial decimation
~l— space O e




