Tensor renormalization group approach to (1+1)-dimensional Hubbard model

Shinichiro Akiyama (Univ. of Tsukuba) in collaboration with Yoshinobu Kuramashi

Based on PRD104(2021)014054

LATTICE2021 Zoom/Gather@MIT 2021.7.27 (EDT)

Introduction

- ✓ The Hubbard model at finite density is an important toy model to understand the physics of strongly-correlated electrons, but it is very challenging to investigate numerically the model away from the half-hilling due to the sign problem
- The TRG approach is expected to be useful to investigate the Hubbard model because the TRG provides us a deterministic (not a stochastic) methodology, which is free from the sign problem
- TRG is very good at dealing with interacting fermions in the path-integral formalism because the TRG can directly evaluate the Grassmann path integral itself without introducing any auxiliary scalar field

Hubbard model in the path-integral formalism

✓ Action of the (d + 1)-dimensional Hubbard model

$$S = \sum_{n} \epsilon \left[\bar{\psi}(n) \left(\frac{\psi(n+\hat{\tau}) - \psi(n)}{\epsilon} \right) - t \sum_{\sigma=1,\cdots,d} \left(\bar{\psi}(n+\hat{\sigma})\psi(n) + \bar{\psi}(n)\psi(n+\hat{\sigma}) \right) \right] \\ + \sum_{n} \epsilon \left[\frac{U}{2} \left(\bar{\psi}(n)\psi(n) \right)^{2} - \mu \bar{\psi}(n)\psi(n) \right]$$

✓ fermions are described by two-component Grassmann numbers

$$\psi(n) = \begin{pmatrix} \psi_{\uparrow}(n) \\ \psi_{\downarrow}(n) \end{pmatrix} \qquad \quad \bar{\psi}(n) = \left(\bar{\psi}_{\uparrow}(n), \bar{\psi}_{\downarrow}(n) \right)$$

✓ The action of the Hubbard model is quite similar with that of the NJL model S. A. et al., JHEP01(2021)121

✓ We start from the (1+1)D case, exactly solved by the Bethe ansatz, to discuss the efficiency of the TRG approach to the (d+1)D Hubbard model w/ d>1

Algorithmic parameter dependence

with U/t = 4, $N_{\tau} = 2^{24}$, $N_{\sigma} = 2^{12}$, $D \le 80$

 Calculation by the Grassmann HOTRG (whose formulation is based on SA-Kadoh, arXiv:200507570 [hep-lat])

 Imaginary time evolution + Space-time coarse graining (a similar treatment to previous HOTRG study of (2+1)D quantum Ising model in Xie et al, PRB86(2012)045139)

 $\epsilon = 10^{-4}$ is sufficiently small

Scaling w. r. t. D is discussed later

The model with t = 0 (one-site model)

with U = 4, $\epsilon = 10^{-4}$, $N_{\tau} = 2^{24}$

-> No hopping structure in the spatial direction

Imaginary time evolution restores the exact results

The model with U = 0 (free fermion model)

with $t = 1, \epsilon = 10^{-4}, N_{\tau} = 2^{24}, N_{\sigma} = 2^{12}, D = 80$

-> TRG approximately evaluates the tensor network contraction

The current approach (= imaginary time evolution + space-time coarse graining) restores the free-field solution

5/9

Number density with U/t = 4with $\epsilon = 10^{-4}$, D = 80

The TRG allows us to investigate the system away from the half filling ($\mu = 2$) Characteristic feature of the metal-insulator transition is captured by the TRG Fitting of the number density with $U/t = 4, \epsilon = 10^{-4}, D = 80$

At D = 80, we obtain $\mu_c(D) = 2.698(1)$ and $\nu = 0.51(2)$ Exact solutions -> $\mu_c = 2.643$... and $\nu = 0.5$

$D \rightarrow \infty$ limit

with $U/t = 4, \epsilon = 10^{-4}, D \le 80$

D	60	65	70	75	80	∞
fit range	[2.72, 3.00]	[2.70, 3.00]	[2.70, 3.00]	[2.69, 3.00]	[2.68, 3.00]	
$\mu_{\rm c}(D)$	2.720(3)	2.710(1)	2.7068(8)	2.701(1)	2.698(1)	2.642(05)(13)
ν	0.49(3)	0.52(1)	0.50(2)	0.51(2)	0.51(2)	_

 $\mu_c(D \to \infty) = 2.642(05)(13)$ and ν are consistent with the exact values, $\mu_c = 2.643 \dots$ and $\nu = 0.5$

Summary

- No difficulty to apply the TRG approach to fermions on a lattice
- (1+1)D Hubbard model is investigated within the path-integral formalism and the numerical results are consistent with the exact values **even away from half filling**
- The Grassmann ATRG algorithm is expected to be useful to investigate the higher-dimensional Hubbard model (in progress)

Appendices

Imaginary time evolution + space-time coarse-graining

We have different hopping structures in temporal and spatial directions
-> 2D tensor network is constructed by anisotropic local Grassmann tensors

Imaginary time evolution + space-time coarse-graining

$$S = \sum_{n} \left[\bar{\psi}(n) \big(\psi(n+\hat{\tau}) - \psi(n) \big) - t\epsilon \sum_{\sigma=1,\cdots,d} \big(\bar{\psi}(n+\hat{\sigma}) \psi(n) + \bar{\psi}(n) \psi(n+\hat{\sigma}) \big) \right] \\ + \sum_{n} \epsilon \left[\frac{U}{2} \big(\bar{\psi}(n) \psi(n) \big)^2 - \mu \bar{\psi}(n) \psi(n) \right]$$

- ✓ With sufficiently small *ε*, one has almost vanishing spatial interaction compared with the temporal interaction
- Temporal Decimation by the HOSVD works much better than spatial decimation