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Introduction

✔ The Hubbard model at finite density is an important toy model to understand 
the physics of strongly-correlated electrons, but it is very challenging to 
investigate numerically the model away from the half-hilling due to the sign 
problem 

✔ The TRG approach is expected to be useful to investigate the Hubbard model 
because the TRG provides us a deterministic (not a stochastic) methodology, 
which is free from the sign problem
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✔ TRG is very good at dealing with interacting fermions in the path-integral 
formalism because the TRG can directly evaluate the Grassmann path 
integral itself without introducing any auxiliary scalar field



Hubbard model in the path-integral formalism
✔ Action of the (𝑑 + 1)-dimensional Hubbard model   
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✔ fermions are described by two-component Grassmann numbers
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✔ The action of the Hubbard model is quite similar with that of the NJL model

✔We start from the (1+1)D case, exactly solved by the Bethe ansatz, to discuss 
the efficiency of the TRG approach to the (d+1)D Hubbard model w/ d>1
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Algorithmic parameter dependence
with 𝑈/𝑡 = 4,𝑁! = 2"#, 𝑁$ = 2%", 𝐷 ≤ 80

𝝐 = 𝟏𝟎!𝟒 is sufficiently small  
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Scaling w. r. t. 𝑫 is discussed later

𝐷 = 80
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𝜖 = 10!#

✔ Calculation by the Grassmann HOTRG 
(whose formulation is based on SA-Kadoh, arXiv:200507570 [hep-lat])

✔ Imaginary time evolution + Space-time coarse graining 
(a similar treatment to previous HOTRG study of (2+1)D quantum Ising model in Xie
et al, PRB86(2012)045139)



The model with 𝑡 = 0 (one-site model)
with 𝑈 = 4, 𝜖 = 10*#, 𝑁! = 2"#
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-> No hopping structure in the spatial direction
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Imaginary time evolution restores the exact results
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The model with 𝑈 = 0 (free fermion model)
with 𝑡 = 1, 𝜖 = 10*#, 𝑁! = 2"#, 𝑁$ = 2%", 𝐷 = 80

The current approach (= imaginary time evolution + space-time coarse graining) 
restores the free-field solution

-> TRG approximately evaluates the tensor network contraction
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Number density with 𝑈/𝑡 = 4
with 𝜖 = 10*#, 𝐷 = 80

The TRG allows us to investigate the system away from the half filling (𝜇 = 2)
Characteristic feature of the metal-insulator transition is captured by the TRG 
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with 𝑈/𝑡 = 4, 𝜖 = 10*#, 𝐷 = 80

At 𝑫 = 𝟖𝟎, we obtain 𝝁𝒄 𝑫 = 𝟐. 𝟔𝟗𝟖(𝟏) and 𝝂 = 𝟎. 𝟓𝟏(𝟐)

𝑛 = 𝐴 + 𝐵 𝜇 − 𝜇% 𝐷 &
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Exact solutions -> 𝝁𝒄 = 𝟐. 𝟔𝟒𝟑… and 𝝂 = 𝟎. 𝟓



𝐷 → ∞ limit
with 𝑈/𝑡 = 4, 𝜖 = 10*#, 𝐷 ≤ 80
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𝝁𝒄 𝑫 → ∞ = 𝟐. 𝟔𝟒𝟐(𝟎𝟓)(𝟏𝟑) and 𝝂
are consistent with the exact values, 

𝝁𝒄 = 𝟐. 𝟔𝟒𝟑… and 𝝂 = 𝟎. 𝟓
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Summary

• No difficulty to apply the TRG approach to fermions on a lattice

• (1+1)D Hubbard model is investigated within the path-integral 
formalism and the numerical results are consistent with the exact 
values even away from half filling

• The Grassmann ATRG algorithm is expected to be useful to investigate  
the higher-dimensional Hubbard model (in progress)
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Appendices



Imaginary time evolution + space-time coarse-graining

✔We have different hopping structures in temporal and spatial directions
-> 2D tensor network is constructed by anisotropic local Grassmann tensors

① Imaginary time evolution 
by the HOTRG in advance

𝜷~𝝐𝟐𝒎𝝉

② Space-time coarse-graining
by the HOTRG 
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We choose 𝒎𝝉 and 𝝐
via the condition 𝝐𝟐𝒎𝝉~𝑶(𝟏𝟎.𝟏)



Imaginary time evolution + space-time coarse-graining
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✔With sufficiently small 𝜖, one has almost 
vanishing spatial interaction compared with 
the temporal interaction 

✔ Temporal Decimation by the HOSVD works 
much better than spatial decimation 


