The 38th International Symposium on Lattice Field Theory

Contribution ID: 75 Type: Oral presentation

Tensor renormalization group approach to (1+1)-dimensional Hubbard model

Tuesday, 27 July 2021 22:45 (15 minutes)

We investigate the metal-insulator transition of the (1+1)-dimensional Hubbard model in the path-integral formalism with the tensor renormalization group method. The critical chemical potential μ_c and the critical exponent ν are determined from the μ dependence of the electron density in the thermodynamic and zero-temperature limit. Our results for μ_c and ν show consistency with the exact solution based on the Bethe ansatz. Our encouraging results indicate the applicability of the tensor renormalization group method to the analysis of higher-dimensional Hubbard models.

Primary author: AKIYAMA, Shinichiro (University of Tsukuba)

Co-author: KURAMASHI, Yoshinobu (University of Tsukuba)

Presenter: AKIYAMA, Shinichiro (University of Tsukuba)

Session Classification: Theoretical developments and applications beyond particle physics

Track Classification: Theoretical developments and applications beyond particle physics