Symmetric mass generation in lattice gauge theory

Nouman Butt

Lattice 2021

Nouman Butt (Argonne National Lab)

Strongly interacting fermions

Can fermions acquire mass without breaking flavor symmetries ?

Outline

Can fermions acquire mass without breaking flavor symmetries ?

Possible in a lattice setup.

Outline

Can fermions acquire mass without breaking flavor symmetries ?

Possible in a lattice setup.

SO(4) invariant reduced staggered fermion model in D = 4 has massless and massive phases without any intervening symmetry broken phase

$$S = \sum_{x,\mu} \psi^{a} [\eta_{\mu} \Delta_{\mu} \delta_{ab} + G\phi^{+}_{ab}] \psi^{b} + \sum_{x} \frac{1}{4} \phi^{2}_{+} - \frac{\kappa}{2} \sum_{x,\mu} [\phi^{+}_{x} \phi^{+}_{x+\mu} + \phi^{+}_{x} \phi^{+}_{x-\mu}]$$

$$S = \sum_{x,\mu} \psi^{a} [\eta_{\mu} \Delta_{\mu} \delta_{ab} + G\phi^{+}_{ab}] \psi^{b} + \sum_{x} \frac{1}{4} \phi^{2}_{+} - \frac{\kappa}{2} \sum_{x,\mu} [\phi^{+}_{x} \phi^{+}_{x+\mu} + \phi^{+}_{x} \phi^{+}_{x-\mu}]$$

We use the isomorphism SO(4) = SU₊(2) × SU₋(2) for introducing Yukawa field φ^{ab} where φ^{ab}₊ = P₊φ^{ab} = ¹/₂(φ^{ab} + ¹/₂ε_{abcd}φ^{cd})

$$S = \sum_{x,\mu} \psi^{a} [\eta_{\mu} \Delta_{\mu} \delta_{ab} + G\phi^{+}_{ab}] \psi^{b} + \sum_{x} \frac{1}{4} \phi^{2}_{+} - \frac{\kappa}{2} \sum_{x,\mu} [\phi^{+}_{x} \phi^{+}_{x+\mu} + \phi^{+}_{x} \phi^{+}_{x-\mu}]$$

- We use the isomorphism $SO(4) = SU_+(2) \times SU_-(2)$ for introducing Yukawa field ϕ^{ab} where $\phi^{ab}_+ = P_+ \phi^{ab} = \frac{1}{2}(\phi^{ab} + \frac{1}{2}\epsilon_{abcd}\phi^{cd})$
- φ^{ab}₊ is self-dual and transforms under SU₊(2) and is a singlet under SU₋(2).

$$S = \sum_{x,\mu} \psi^{a} [\eta_{\mu} \Delta_{\mu} \delta_{ab} + G\phi^{+}_{ab}] \psi^{b} + \sum_{x} \frac{1}{4} \phi^{2}_{+} - \frac{\kappa}{2} \sum_{x,\mu} [\phi^{+}_{x} \phi^{+}_{x+\mu} + \phi^{+}_{x} \phi^{+}_{x-\mu}]$$

- We use the isomorphism $SO(4) = SU_+(2) \times SU_-(2)$ for introducing Yukawa field ϕ^{ab} where $\phi^{ab}_+ = P_+ \phi^{ab} = \frac{1}{2}(\phi^{ab} + \frac{1}{2}\epsilon_{abcd}\phi^{cd})$
- φ^{ab}₊ is self-dual and transforms under SU₊(2) and is a singlet under SU₋(2).

The self-dual nature of ϕ_+ ensures fermion eigenvalues appear in quartets $(\lambda, \lambda, -\lambda, -\lambda)$ and hence the Pfaffian arising after integrating over ψ is real and positive definite- no sign problem

$$S = \sum_{x,\mu} \psi^{a} [\eta_{\mu} \Delta_{\mu} \delta_{ab} + G\phi^{+}_{ab}] \psi^{b} + \sum_{x} \frac{1}{4} \phi^{2}_{+} - \frac{\kappa}{2} \sum_{x,\mu} [\phi^{+}_{x} \phi^{+}_{x+\mu} + \phi^{+}_{x} \phi^{+}_{x-\mu}]$$

- We use the isomorphism $SO(4) = SU_+(2) \times SU_-(2)$ for introducing Yukawa field ϕ^{ab} where $\phi^{ab}_+ = P_+ \phi^{ab} = \frac{1}{2}(\phi^{ab} + \frac{1}{2}\epsilon_{abcd}\phi^{cd})$
- φ^{ab}₊ is self-dual and transforms under SU₊(2) and is a singlet under SU₋(2).

The self-dual nature of ϕ_+ ensures fermion eigenvalues appear in quartets $(\lambda, \lambda, -\lambda, -\lambda)$ and hence the Pfaffian arising after integrating over ψ is real and positive definite- no sign problem

(Reduced) staggered fermion model

SO(4) flavor symmetry doesn't allow a naive fermion bilinear and Z_2 symmetry ($\phi^+ \rightarrow \pm \phi^+, \psi \rightarrow \pm i\epsilon(x)\psi$) forbids any possible spontaneous symmetry breaking scenario.

(Reduced) staggered fermion model

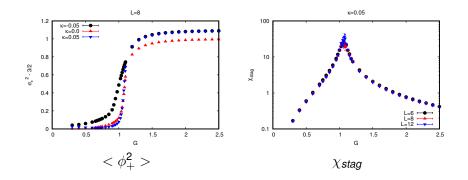
SO(4) flavor symmetry doesn't allow a naive fermion bilinear and Z_2 symmetry ($\phi^+ \rightarrow \pm \phi^+, \psi \rightarrow \pm i\epsilon(x)\psi$) forbids any possible spontaneous symmetry breaking scenario.

With non-zero κ we can achieve a direct transition between the massless and massive phase without breaking the global SO(4) symmetry and the discrete Z_2 symmetry.

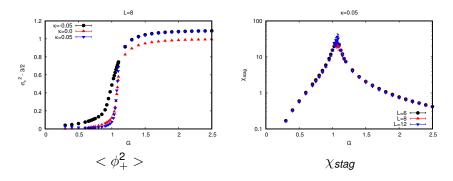
Phase structure from numerical simulation

Nouman Butt (Argonne National Lab)

Phase structure from numerical simulation



Phase structure from numerical simulation



Connected susceptibility $y = -\frac{1}{2}\sum_{x \in A} c(x) a_x^{b} a_x^{b} (x) a_x^{b} b_x^{b} (x) a_x^{b} (x)$

 $\chi_{stag} = \frac{1}{V} \sum_{x,y} \langle \epsilon(x) \psi^a(x) \psi^b(x) \epsilon(y) \psi^a(y) \psi^b(y) \rangle$ shows no volume scaling while we have evidence for four-fermion condensate for non-zero κ

Extending this to a gauge model

Is it possible to retain this phase structure if we make one of the SU(2) subgroups a gauge symmetry.

Action

$$S_{F} = \sum_{x,\mu} \frac{1}{2} \eta_{\mu}(x) \operatorname{Tr}[\psi^{\dagger}(x) U_{\mu}(x) \psi(x+\mu) V_{\mu}^{\dagger}(x) - \psi^{\dagger}(x) U_{\mu}^{\dagger}(x-\mu) \psi(x-\mu) V_{\mu}(x-\mu)]$$

Symmetries

$$\psi
ightarrow G(x)\psi(x)H^{\dagger} \ U_{\mu}(x)
ightarrow G(x)U_{\mu}(x)G^{\dagger}(x+\mu) \ V_{\mu}(x)
ightarrow H(x+\mu)V_{\mu}H^{\dagger}(x)$$

Nouman Butt (Argonne National Lab)

Scalars

$$\psi^{\dagger}\psi \to H\psi^{\dagger}\psi H^{\dagger} \to \sigma \to H\sigma H^{\dagger}$$

$$\psi\psi^{\dagger} \to G\psi\psi^{\dagger}G^{\dagger} \to \phi \to G\phi G^{\dagger}$$
(1)

Scalars

$$\begin{split} \psi^{\dagger}\psi &\to H\psi^{\dagger}\psi H^{\dagger} \to \sigma \to H\sigma H^{\dagger} \\ \psi\psi^{\dagger} \to G\psi\psi^{\dagger}G^{\dagger} \to \phi \to G\phi G^{\dagger} \end{split} \tag{1}$$

We gauge the symmetry under which the scalar is a singlet.

Yukawa term and auxiliary field action

 $S_Y = \sum_x Tr(\phi(x)\psi(x)\psi^{\dagger}(x)) + \frac{1}{2\lambda^2}\sum_x Tr(\phi(x))^2$

Scalars

$$\psi^{\dagger}\psi \to H\psi^{\dagger}\psi H^{\dagger} \to \sigma \to H\sigma H^{\dagger}$$

$$\psi\psi^{\dagger} \to G\psi\psi^{\dagger}G^{\dagger} \to \phi \to G\phi G^{\dagger}$$
(1)

We gauge the symmetry under which the scalar is a singlet.

Yukawa term and auxiliary field action

$$S_Y = \sum_x Tr(\phi(x)\psi(x)\psi^{\dagger}(x)) + \frac{1}{2\lambda^2}\sum_x Tr(\phi(x))^2$$

G is a global flavor symmetry while *H* is a gauge symmetry. Symmetry breaking bilinear $Tr(\sigma_3\psi\psi^{\dagger})$

Scalars

$$\psi^{\dagger}\psi \to H\psi^{\dagger}\psi H^{\dagger} \to \sigma \to H\sigma H^{\dagger}$$

$$\psi\psi^{\dagger} \to G\psi\psi^{\dagger}G^{\dagger} \to \phi \to G\phi G^{\dagger}$$
(1)

We gauge the symmetry under which the scalar is a singlet.

Yukawa term and auxiliary field action

$$S_Y = \sum_x Tr(\phi(x)\psi(x)\psi^{\dagger}(x)) + \frac{1}{2\lambda^2}\sum_x Tr(\phi(x))^2$$

G is a global flavor symmetry while *H* is a gauge symmetry. Symmetry breaking bilinear $Tr(\sigma_3\psi\psi^{\dagger})$

Integrating out the scalar field generates four-fermion term $\sum_{x} Tr(\psi(x)\psi^{\dagger}(x)\psi(x)\psi^{\dagger}(x))$

The gauged model also posses an exact Z_2 center symmetry $V_{\mu}(x) \rightarrow \pm V_{\mu}(x), \psi(x) \rightarrow \epsilon(x)\psi(x)$. Polyakov line is a good order parameter.

The gauged model also posses an exact Z_2 center symmetry $V_{\mu}(x) \rightarrow \pm V_{\mu}(x), \psi(x) \rightarrow \epsilon(x)\psi(x)$. Polyakov line is a good order parameter.

Reduction to SO(4) model

Using the pseudo-reality condition for SU(2) elements $\psi^{\dagger} = \sigma_2 \psi^T \sigma_2$ and $\psi = \sigma_{\mu} \chi_{\mu}$ it is easy to show that this model reduces to the aforementioned SO(4) model in β_G , $\beta_H \to \infty$ limit.

The gauged model also posses an exact Z_2 center symmetry $V_{\mu}(x) \rightarrow \pm V_{\mu}(x), \psi(x) \rightarrow \epsilon(x)\psi(x)$. Polyakov line is a good order parameter.

Reduction to SO(4) model

Using the pseudo-reality condition for SU(2) elements $\psi^{\dagger} = \sigma_2 \psi^T \sigma_2$ and $\psi = \sigma_\mu \chi_\mu$ it is easy to show that this model reduces to the aforementioned SO(4) model in β_G , $\beta_H \to \infty$ limit.

As β_H increases the lattice spacing *a* decreases and the physical temperature $T = \frac{1}{La}$ increases with de-confinement once temperature exceeds the strong scale.

The gauged model also posses an exact Z_2 center symmetry $V_{\mu}(x) \rightarrow \pm V_{\mu}(x), \psi(x) \rightarrow \epsilon(x)\psi(x)$. Polyakov line is a good order parameter.

Reduction to SO(4) model

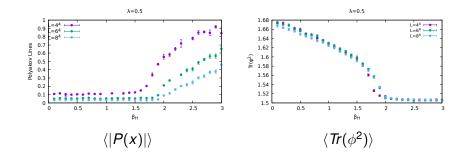
Using the pseudo-reality condition for SU(2) elements $\psi^{\dagger} = \sigma_2 \psi^T \sigma_2$ and $\psi = \sigma_{\mu} \chi_{\mu}$ it is easy to show that this model reduces to the aforementioned SO(4) model in β_G , $\beta_H \to \infty$ limit.

As β_H increases the lattice spacing *a* decreases and the physical temperature $T = \frac{1}{La}$ increases with de-confinement once temperature exceeds the strong scale. We keep Yukawa coupling small and scan for four-fermion condensate as β_H is varied.

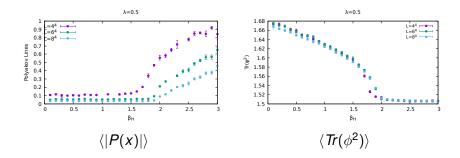
Numerical results

Nouman Butt (Argonne National Lab)

Numerical results



Numerical results



 $Tr(\phi^2)$ is used as a proxy for four-fermion condensate. Here the four-fermion condensate is a result of gauge interactions since the Yukawa coupling is below the critical λ_c to drive the transition.

Nouman Butt (Argonne National Lab)

• We have shown that fermions can acquire mass using gauge dynamics while maintaining flavor and discrete symmetries.

- We have shown that fermions can acquire mass using gauge dynamics while maintaining flavor and discrete symmetries.
- Spectrum of composite states in the confining regime requires further work.

- We have shown that fermions can acquire mass using gauge dynamics while maintaining flavor and discrete symmetries.
- Spectrum of composite states in the confining regime requires further work.
- Can this mechanism be used to decouple (have infinitely massive) right-handed states and obtain a chiral theory in the continuum limit ?

Thank you!

Collaborators Simon Catterall , Goksu Can Toga

Funding and computing resources

Thank you!

Collaborators Simon Catterall , Goksu Can Toga

Funding and computing resources

