A novel nonperturbative renormalization scheme for local operators

Chris Monahan

William & Mary/Jefferson Lab

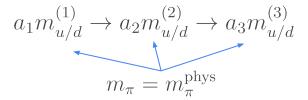
With Anna Hasenfratz, Matthew Rizik, Andrea Shindler, and Oliver Witzel

Renormalisation on the lattice

Renormalisation on the lattice poses challenges beyond those encountered in textbook discussions

Renormalisation procedures should be nonperturbative

★ Parameters of QCD Lagrangian typically renormalised by tuning physical parameters



- ★ Composite operators require different approaches
 - connect hadronic and perturbative scales
 - matched to the MS-bar scheme via perturbation theory

E.g. Rome-Southampton method *NPB* 445 (1995) 81 or Schrödinger functional *NPB* 384 (1992) 168

Study the feasibility of the gradient flow for defining a renormalisation procedure for local composite operators

Gradient flow and real-space renormalisation group

Block-spin transformation provides a real-space averaging or coarse-graining procedure

- leaves partition function invariant
- \star modifies parameters of the action and expectation values of operators

In vicinity of a fixed point, scaling operators and two-point functions transform as

$$\widetilde{\mathcal{O}} = b^{d+\gamma} \mathcal{O} \qquad G_{\mathcal{O}}(g_i, x_0) = b^{-2(d+\gamma)} G_{\mathcal{O}}(g_i^{(b)}, x_0/b)$$

Provides definition of the anomalous dimension of the operator/two-point function

$$\Delta_{\mathcal{O}}(g_i^{(b)}) = b \frac{\mathrm{d}}{\mathrm{d}b} \log G_{\mathcal{O}}(g_i^{(b)}, x_0/b)$$

Gradient flow provides natural tool for coarse-graining - smears fields over a region ~ $\sqrt{8\tau}$

$$\Phi_b(x_b) = b^{-d_\phi - \eta/2} \phi(bx_b; \tau)$$

 $\Phi_b(x_b) = f(\phi)$

 $g_i \to q_i^{(b)}$

$$G_{\mathcal{O}}(g_i, x_0) = \langle \mathcal{O}(0)\mathcal{O}(x_0) \rangle$$

$$x_0 \gg b$$

Carosso, Hasenfratz & Neil, PRL 121 (2018) 201601

Narayanan & Neuberger, JHEP 0603 064 Lüscher, JHEP 1008 071 Lüscher, IHEP 04 (2013) 123

Renormalisation scheme: some preliminaries

Define the bare two-point functions

$$G_{\mathcal{O}}(x_4; \tau) = \int d^3 \mathbf{x} \langle \mathcal{O}(\mathbf{x}, x_4; \tau) P_{\mathcal{O}}(x) \rangle$$

$$G_V(x_4;\tau) = \frac{1}{3} \sum_{j=1}^{3} \int d^3 \mathbf{x} \left\langle V_j(\mathbf{x}, x_4; \tau) P_V(x) \right\rangle$$

and introduce the bare double ratio

$$\overline{R}_{\mathcal{O}}(x_4;\tau) = \frac{R_{\mathcal{O}}(x_4;\tau=0)}{R_{\mathcal{O}}(x_4;\tau)}$$

$$R_{\mathcal{O}}(x_4;\tau) = \frac{G_{\mathcal{O}}(x_4;\tau)}{G_V(x_4;\tau)}$$

which renormalises as

$$\overline{R}_{\mathcal{O}}^{\mathrm{R}}(x_4;\tau) = \frac{Z_{\mathcal{O}}}{Z_{V}} \overline{R}_{\mathcal{O}}(x_4;\tau)$$

Renormalisation scheme

Define the gradient flow scheme by imposing the renormalisation condition

$$\overline{Z}_{\mathcal{O}}^{\mathrm{GF}}(\mu)\overline{R}_{\mathcal{O}}(x_4;\tau)\Big|_{\substack{\mu^2\tau=c\\x_4^2\gg \tau/c}} = \overline{R}_{\mathcal{O}}^{\mathrm{(tree)}}(x_4;\tau)$$

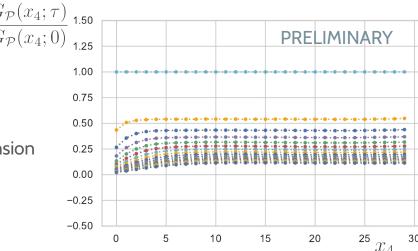
$$\overline{R}_{\mathcal{O}}(x_4;\tau) = \frac{R_{\mathcal{O}}(x_4;\tau=0)}{R_{\mathcal{O}}(x_4;\tau)}$$
$$R_{\mathcal{O}}(x_4;\tau) = \frac{G_{\mathcal{O}}(x_4;\tau)}{G_V(x_4;\tau)}$$

which allows us to extract

$$\overline{Z}_{\mathcal{O}}^{\mathrm{GF}}(\mu) = \frac{\overline{R}_{\mathcal{O}}^{\mathrm{(tree)}}(x_4; \tau)}{\overline{R}_{\mathcal{O}}(x_4; \tau)} \bigg|_{\substack{\mu^2 \tau = c \\ x_4^2 \gg \tau/c}}$$

We further define the (nonperturbative) anomalous dimension

$$\gamma_{\mathcal{O}} = -2\tau \frac{\mathrm{d}}{\mathrm{d}\tau} \log Z_{\mathcal{O}}^{\mathrm{GF}}(\mu)$$



Procedure

1. Calculate the renormalisation parameter nonperturbatively

$$\overline{Z}_{\mathcal{O}}^{\mathrm{GF}}(\mu) = \frac{\overline{R}_{\mathcal{O}}^{\mathrm{(tree)}}(x_4; \tau)}{\overline{R}_{\mathcal{O}}(x_4; \tau)} \bigg|_{\substack{\mu^2 \tau = c \\ x_4^2 \gg \tau/c}}$$

2. Calculate the anomalous dimension nonperturbatively

$$\gamma_{\mathcal{O}} = -2\tau \frac{\mathrm{d}}{\mathrm{d}\tau} \log Z_{\mathcal{O}}^{\mathrm{GF}}(\mu)$$

to move from low to high scales

3. Match to the MS-bar scheme using perturbation theory

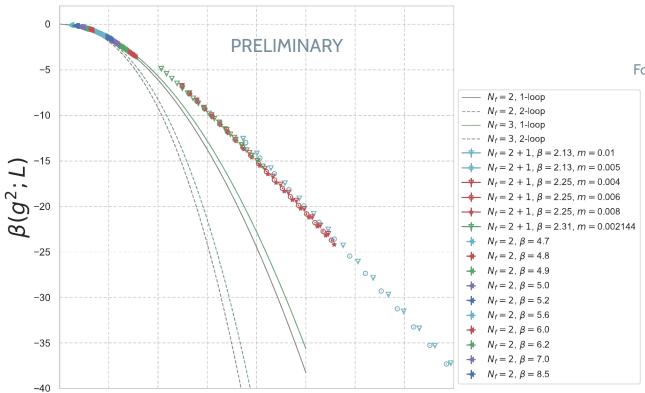
Preliminary nonperturbative results

10

5

0

15



25

30

35

nf=2 data from Hasenfratz & Witzel, PRD 101 (2020) 034514 nf=2+1 RBC/UKQCD DWF ensembles JHEP 1712 (2017) 008 PRD 83 (2011) 074508 PRD 78 (2008) 114509

Similar approach proposed in Fodor *et al.*, EPJ Web Conf. 175 (2018) 08027

See also:

R. Harlander <u>Tuesday 07:15</u>

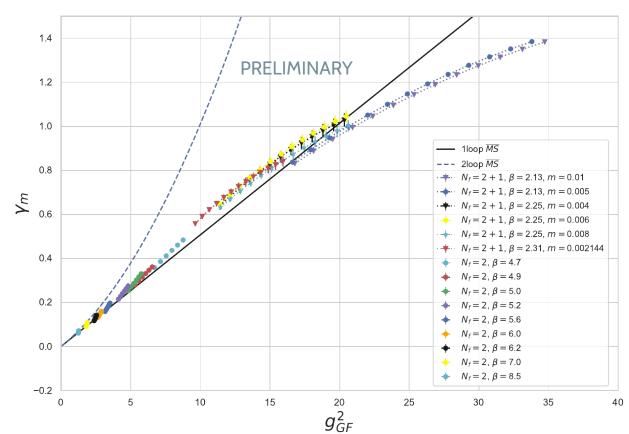
C. Peterson Wednesday 22:30

K. Holland Wednesday 22:45

J. Kuti <u>Thursday 21:00</u>

A. Hasenfratz <u>Thursday 21:15</u>

Preliminary nonperturbative results



See: M. Rizik Wednesday 07:30

Perturbative analysis

Parallel perturbative calculations

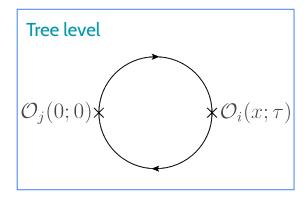
- ★ Perturbative matching to MS-bar scheme
- ★ Perturbative analysis of tree-level discretisation effects

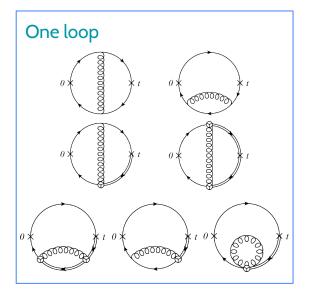
Proof-of-principle matching calculation: calculate matching coefficient

$$\Delta Z_{\mathcal{O}} = Z_{\mathcal{O}}^{GF}(\mu) - Z_{\mathcal{O}}^{\overline{MS}}(\mu)$$

Standard momentum-space perturbative representation of correlators

- leads to challenging integrals at NLO
- oscillatory factor complicate numerical integration





Preliminary perturbative calculations

Consider first

Recall: nonperturbative scheme defined via

$$\Gamma_{ij}(\tau) = \int d^4x \left\langle \mathcal{O}_i(x;\tau) \mathcal{O}_j(0;0) \right\rangle$$

$$\Gamma_{ij}(x_4;\tau) = \int d^3 \mathbf{x} \langle \mathcal{O}_i(\mathbf{x}, x_4; \tau) \mathcal{O}_j(0; 0) \rangle$$

Results depend on choice of bilinear operator, but can be written

$$\Gamma_{i,i}(\tau) = \Gamma_{i,i}^{(0)} \left\{ 1 + g^2 \frac{C_2(F)}{(4\pi)^2} \left[(B_i^2 - 4) \left(\frac{1}{\epsilon} + \log(2\bar{\mu}^2 \tau) + \gamma_E \right) + C_i + \mathcal{O}(\epsilon) \right] + \mathcal{O}(g^4) \right\}$$
LO correlator
operator-dependent constant
scheme-dependent finite part

Generates correct leading-order anomalous dimension, e.g. for the pseudoscalar case

$$\gamma_P = -2\tau \partial_\tau \log \left[\frac{R_P(\tau)}{R_P^{(0)}(\tau)} \right] = -6g^2 \frac{C_2(F)}{(4\pi)^2} + \mathcal{O}(g^4)$$

Conclusions

Gradient flow provides controlled, continuous smearing for fields on the lattice

Introduced the gradient flow scheme to nonperturbatively renormalise local composite operators

- **★** Nonperturbative
- ★ Gauge-invariant
- ★ Provides nonperturbative step-scaling procedure
- ★ Defined for both small- and large-volume regimes

Preliminary nonperturbative results available and perturbative analysis underway

Thank you!

Chris Monahan

cjmonahan@wm.edu

Gradient flow

Continuous one parameter mapping - evolves fields to classical minimum

$$\partial_{\tau}B_{\mu} = D_{\nu}G_{\nu\mu} + \alpha_0 D_{\mu}\partial_{\nu}B_{\nu}$$

$$D_{\mu}G_{\nu\sigma} = \partial_{\mu}G_{\nu\sigma} + [B_{\mu}, G_{\nu\sigma}]$$

$$\partial_{\tau}\chi = D_{\nu}D^{\nu}\chi - \alpha_0\partial_{\nu}B_{\nu}\chi$$

$$D_{\mu}\chi = \partial_{\mu}\chi + B_{\mu}\chi$$

$$D_{\mu}\chi = \partial_{\mu}\chi + B_{\mu}\chi \qquad G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$$

Provides controlled, continuous smearing

- Gauge invariant
- \star Nonperturbative
- \star Renormalised correlation functions remain finite, up to a multiplicative wavefunction renormalisation

Solving the flow equations at leading order

$$\widetilde{B}_{\mu}(p) = e^{-p^2 \tau} \widetilde{A}_{\mu}(p) + \mathcal{O}(g)$$
 $B_{\mu}|_{\tau=0} = A_{\mu}$

$$B_{\mu}|_{\tau=0} = A_{\mu}$$

$$\widetilde{\chi}(p) = e^{-p^2 \tau} \widetilde{\psi}(p) + \mathcal{O}(g)$$
 $\chi|_{\tau=0} = \psi$

$$\chi|_{\tau=0} = \psi$$

Preliminary perturbative calculations

For any bilinear i, we will need the NLO calculation for i and the vector:

$$\tilde{\Gamma}_{i,i}^{(1)} = \frac{C_2(F)}{(4\pi)^2} \tilde{\Gamma}_{i,i}^{(0)} \left\{ (B_i^2 - 4) \left[\frac{1}{\epsilon} + \log(8\pi t) \right] - 6\log 3 + 20\log 2 + 2B_i^2 - 2B_i - 2 + \mathcal{O}(\epsilon) \right\},\,$$

where $B_i = (2, -2, 1, -1, 0)$ and

$$\tilde{\Gamma}_{ij}^{(0)}(t,0) = \begin{cases} k_S^2 \frac{\dim(F)}{(4\pi)^2 t} (8\pi t)^{2-d/2} \frac{4d}{d(d-2)} + \mathcal{O}(m), & i, j = S, S \\ k_P^2 \frac{\dim(F)}{(4\pi)^2 t} (8\pi t)^{2-d/2} \frac{4(d-8)}{d(d-2)} + \mathcal{O}(m), & i, j = P, P \\ -k_V^2 \frac{\dim(F)}{(4\pi)^2 t} (8\pi t)^{2-d/2} \frac{4(d-2)}{d(d-2)} \delta_{\mu\nu} + \mathcal{O}(m), & i, j = V, V \quad (\gamma_{\mu}, \gamma_{\nu}) \\ k_A^2 \frac{\dim(F)}{(4\pi)^2 t} (8\pi t)^{2-d/2} \frac{4(d-6)}{d(d-2)} \delta_{\mu\nu} + \mathcal{O}(m, \hat{\delta}), & i, j = A, A \quad (\gamma_{\mu} \gamma_5, \gamma_{\nu} \gamma_5) \\ k_T^2 \frac{\dim(F)}{(4\pi)^2 t} (8\pi t)^{2-d/2} \frac{4(d-4)}{d(d-2)} \delta_{\mu}^{[\rho} \delta_{\nu]}^{\sigma]} + \mathcal{O}(m), & i, j = T, T \quad (\sigma_{\mu\nu}, \sigma_{\rho\sigma}) \end{cases}$$

Renormalizing only the coupling, so that $g_0^2 = \mu^{2\epsilon} g^2 + \mathcal{O}(g^4)$, we have

$$\tilde{\Gamma}_{i,i} = \tilde{\Gamma}_{i,i}^{(0)} \left\{ 1 + g^2 \frac{C_2(F)}{(4\pi)^2} \left[(B_i^2 - 4) \left(\frac{1}{\epsilon} + \log(2\bar{\mu}^2 t) + \gamma_E \right) - 6\log 3 + 20\log 2 + 2B_i^2 - 2B_i - 2 + \mathcal{O}(\epsilon) \right] + \mathcal{O}(g^4) \right\}.$$

Using

$$\partial_t \frac{\tilde{\Gamma}_{i,i}}{\tilde{\Gamma}_{i,i}^{(0)}} = g^2 \frac{C_2(F)}{(4\pi)^2} \frac{B_i^2 - 4}{t},$$

We have

$$\gamma_P = -2t\partial_t \log[R_P(t)/R_P^{(0)}(t)] = -6g^2 \frac{C2F}{(4\pi)^2} + \mathcal{O}(g^4).$$