Infinite Variance in Fermionic Systems¹

Cagin Yunus

Massachusetts Institute of Technology

29 July 2021

¹Work done with William Detmold

Outline

- 1. Exceptional configurations in QCD
- 2. A Toy Model
- 3. Discrete Hubbard-Stratonovich transformation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

- 4. Test for Toy Model and Gross-Neveu
- 5. Reweighting

Exceptional Configurations in QCD

In QCD, one frequently calculates multiplication of N propagators:

$$\left\langle \prod_{n=1}^{N} \bar{\Psi}_{i_n} \Psi_{j_n} \right\rangle = \frac{\int \mathcal{D}[U] e^{-\mathcal{S}[U]} \det(\mathcal{D}[U]) \prod_{n=1}^{N} \mathcal{D}[U]_{i_n j_n}^{-1}}{\int \mathcal{D}[U] e^{-\mathcal{S}[U]} \det(\mathcal{D}[U])}$$
(1)

One can choose a linear combination of the propagators such that they will give inverses of the eigenvalues of the Dirac operator:

$$\left\langle \prod_{n=1}^{N} \sum_{m} c_{n,m} \bar{\Psi}_{i_{n,m}} \Psi_{j_{n,m}} \right\rangle = \frac{\int \mathcal{D}[U] e^{-S[U]} \prod_{a} \lambda_{a}[U] \prod_{n=1}^{N} \frac{1}{\lambda_{n}[U]}}{\int \mathcal{D}[U] e^{-S[U]} \prod_{a} \lambda_{a}[U]}$$
(2)

Expcetional Configurations in QCD

Natural estimator:

$$\hat{\mathcal{O}}_{1,\dots,N} = \frac{1}{S} \sum_{i=1}^{S} \frac{1}{\prod_{n=1}^{N} \lambda_n[U_i]}$$

Issues arise when one of the eigenvalues, $\lambda_1[U]$, vanishes at $U = U^*$. The probability of sampling U^* is 0. The configurations around $U = U^*$ will be sampled with very small frequency $\propto \lambda_1[U]$ but the measurements there will have a large size $\propto \frac{1}{\lambda_1[U]}$ with the net contribution is finite.

The estimator has infinite variance!

$$\operatorname{var}\left(\hat{\mathcal{O}}_{1}\right)\supset\frac{1}{S}\left\langle \mathcal{O}_{1}[U]^{2}\right\rangle \propto \int \mathcal{D}[U]\frac{1}{\lambda_{1}[U]}\left(\cdots\right)$$

A Toy Model

We introduce a 0-d QFT with the partition function:

$$Z = \int \left[d\Psi d\bar{\Psi} \right] e^{-m\bar{\Psi}\Psi + \frac{g}{2} \left(\bar{\Psi}\Psi \right)^2}$$

with $\Psi \equiv \Psi_a^s | a \in \{1, 2\}, s \in \{\uparrow, \downarrow\}$ and g > 0. One can apply the usual Hubbard-Stratonovich transformation

$$e^{\frac{1}{2}\Phi^2} = \frac{1}{2\pi} \int d\sigma e^{-\frac{1}{2}\sigma^2 + \sigma\Phi}$$

where $\Phi = \bar{\Psi}\Psi$ to write the partition function in terms of the auxiliary field σ :

$$Z = \int d\sigma e^{-\frac{1}{2}\sigma^2} (m + \sqrt{g}\sigma)^4$$

A Toy Model

$$Z = \int d\sigma e^{-\frac{1}{2}\sigma^2} (m + \sqrt{g}\sigma)^4$$

Morally speaking, this model should be though as having a Dirac operator with the eigenvalues:

$$\lambda_{1,2,3,4} = m + \sqrt{g}\sigma$$

The observable we want to construct is:

$$\mathcal{O} = \prod_{a=1,2} \prod_{s=\uparrow,\downarrow} \bar{\Psi}_a^s \Psi_a^s \equiv \frac{1}{\prod_{i=1}^4 \lambda_i} = \frac{1}{\left(\frac{m}{m} + \sqrt{g}\sigma\right)^4}$$

The estimator $\hat{\mathcal{O}} = \frac{1}{5} \sum_{i=1}^{S} \frac{1}{\left(m + \sqrt{g}\sigma_i\right)^4}$ has infinite variance due to configurations near $\sigma^* = -\frac{m}{\sqrt{g}}$.

Two Proposals

1. A Discrete Hubbard-Stratonovich Transformation

2. A Reweighting Method

A Discrete Hubbard-Stratonovich Transformation

Continuous Hubbard-Stratonovich transformation is satisfied at every order in Φ :

$$e^{\frac{1}{2}\Phi^2} = \frac{1}{2\pi} \int d\sigma e^{-\frac{1}{2}\sigma^2 + \sigma\Phi}$$

However, since $\Phi = \bar{\Psi}\Psi$ is constructed out of fermions, a certain power of Φ vanishes:

$$\Phi^{2N_f+1}=0$$

Therefore, such an auxiliary field transformation needs to be satisfied only up to $\mathcal{O}\left(\Phi^{2N_f+1}\right)$. We ask: can we find a finite sum

$$e^{\frac{1}{2}\Phi^2} = \sum_k w_k e^{t_k \Phi}$$

Discrete Hubbard-Stratonovich Transformation

Hope: if all t_k are far away from the exceptional configuration $\sigma^* = -\frac{m}{\sqrt{g}}$, then the variance of \hat{O} will be small. Let $\Phi \to i\Phi$ and reinterpret the equation as equality of moment generating functions of some probability distributions up to some power of Φ :

$$e^{-\frac{1}{2}\Phi^{2}} = \sum_{k} w_{k} e^{it_{k}\Phi} + \mathcal{O}\left(\Phi^{2N_{f}+1}\right)$$

In terms of the probability distributions $e^{-\frac{1}{2}t^2}$ and $\sum_k w_k \delta(t - t_k)$, this means that:

$$\int_{-\infty}^{\infty} dt \, e^{-\frac{1}{2}t^2} f(t) = \sum_k w_k f(t_k)$$

for all polynomials f(t) of degree equal or less than $2N_f$.

Discrete Hubbard-Stratonovich Transformation

This problem is solved with the method of Gauss-Hermite quadrature. Let $He_j(t)$ to be the (probabilist's) Hermite polynomials:

$$He_{j}(t) = (-1)^{j} e^{\frac{1}{2}t^{2}} \left(\frac{d}{dt}\right)^{j} e^{-\frac{1}{2}t^{2}}$$

then t_k are the roots of $He_N(t)$ such that $N \ge N_f + 1$ and $w_k > 0$ are given by:

$$w_k = \frac{(N!)^2}{He'_N(t_k)He_{N-1}(t_k)}$$

Two remarks:

1. Infinitely many choices for a given N_f .

2. In the limit $N \rightarrow \infty$, it gives the continuous version.

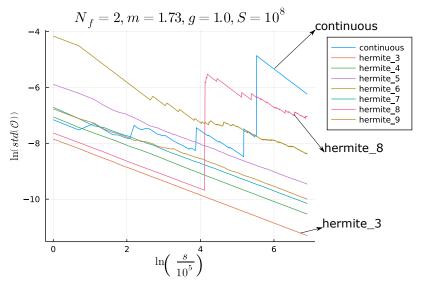
Normally, the standard deviation of an estimator has the scaling relation:

$$\sigma\left(\hat{\mathcal{O}}\right) \propto \frac{1}{\sqrt{s}}$$

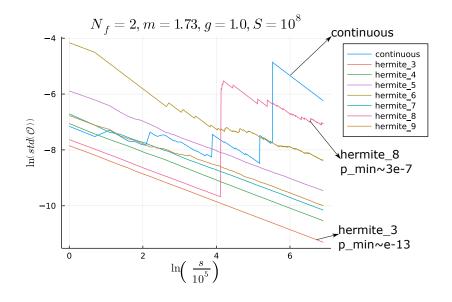
where *s* is the sample size.

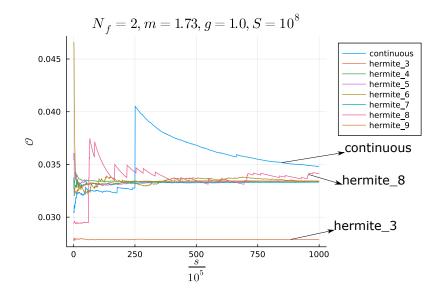
We expect this relation to be invalid for estimators with infinite variance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

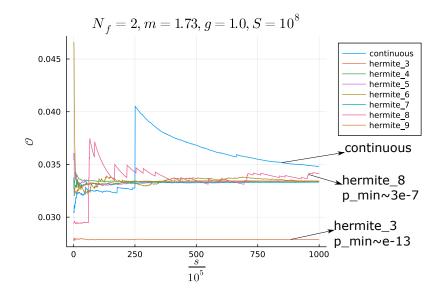


Jumps happen due to configurations close the exceptional configuration.



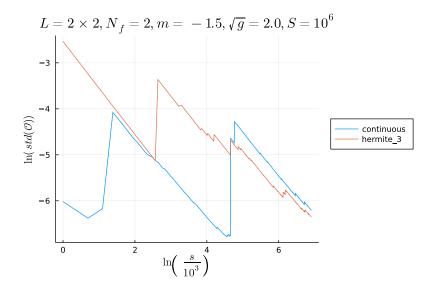


◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ



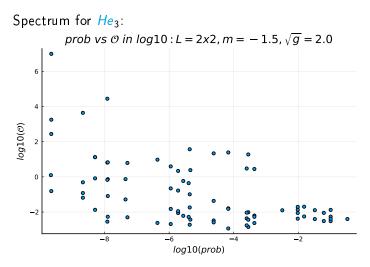
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Comparison for the Gross-Neveu Model



- ▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - のへで

Comparison for the Gross-Neveu Model



The problem is much worse for larger lattices.

Reweighting

The observable \mathcal{O} is highly fluctuating. Try to make less fluctuating by calculating \mathcal{O} in steps by absorbing \mathcal{O} into the probability distribution \mathcal{P} :

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{\int d\sigma \left[\mathcal{P}(\sigma) \right] \cdot \mathcal{O}(\sigma)}{\int d\sigma \left[\mathcal{P}(\sigma) \right]} \\ &= \frac{\int d\sigma \left[\mathcal{P}(\sigma) \mathcal{O}^{\frac{1}{2}}(\sigma) \right] \cdot \mathcal{O}^{\frac{1}{2}}(\sigma)}{\int d\sigma \left[\mathcal{P}(\sigma) \mathcal{O}^{\frac{1}{2}}(\sigma) \right]} \frac{\int d\sigma \left[\mathcal{P}(\sigma) \right] \cdot \mathcal{O}^{\frac{1}{2}}(\sigma)}{\int d\sigma \left[\mathcal{P}(\sigma) \right]} \end{split}$$

Reweighting

To generalize to N steps we define the probability distributions:

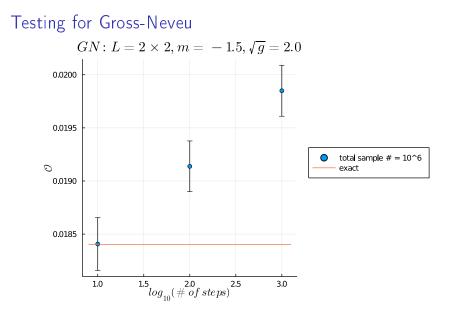
$$\begin{aligned} & \mathsf{P}_{\mu}(\sigma) \propto \mathsf{P}(\sigma)\mathcal{O}^{\mu}(\sigma) \\ & \langle \mathsf{X} \rangle_{\mu} = \int \mathsf{d}\sigma \left[\mathsf{P}_{\mu}(\sigma) \right] \cdot \mathsf{X}(\sigma) \end{aligned}$$

Then we obtain:

$$\langle \mathcal{O} \rangle = \prod_{n=0}^{N-1} \left\langle \mathcal{O}^{\frac{1}{N}} \right\rangle_{\mu = \frac{n}{N}}$$

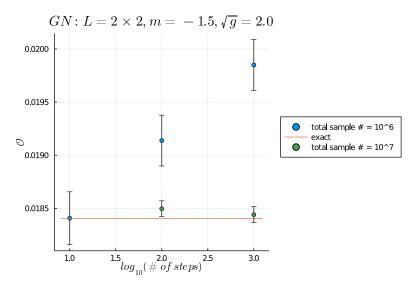
One expects that for large enough N each term should have finite variance.

(ロ)、



Higher # of steps may give worse results because sample size per step decreases.

Testing for Gross-Neveu



Choose the smallest N that makes every term finite.

Takeaway

- 1. Observables with infinite variance occurs in some fermionic systems due to zero eigenvalues of the Dirac operator
- 2. Discrete Hubbard-Stratonovich works in principle but is not useful for realistic problems

3. Reweighting works however one should choose smallest number of steps possible

Future Work

1.
$$N o \infty$$
: $\langle \mathcal{O}
angle = e^{\int_0^1 d\mu \left< \log(\mathcal{O}) \right>_\mu}$

2. Application to higher dimensional theories

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●