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   Readily available toolbox: Classical computation

  Simplest theory to analyze: SU(2) LGT in 1+1 dimension

 Computational technique: Exact diagonalization

Other technique: tensor network calculation: talk by Aniruddha Bapat
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Alternate model: Quantum link model, topic of the next talk in this session

Renewed interest in Hamiltonian LGT



Pros. Cons.
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• Additional cost for imposing Gauss’ law. 

• Calculation involves SU(2) CG coefficients, SU(3)       
generalization is nontrivial. 

• Physical basis is linear combination of angular 
momentum basis, exponential cost.

• Minimal and physical basis

• No fermionic degrees of 
freedom, useful in higher 
dimensions.

•No bosonic degrees of freedom, 
no cut-off effect. 

• Only valid in 1 spatial dimensional lattice with open 
boundary condition.

• Additional U(1) gauge field is introduced (i.e additional 
cut-off effect), at the cost of removing fermions using 
Gauss law. 

• All the non trivialities of angular momentum basis still 
exists. 

• Minimal and physical basis. 
• Local description of gauge            
invariant Hilbert space 
• States are 1-sparse. 
• Valid for any dimensions and 
any boundary condition.

• Involves extra lattice-sites and links in higher 
dimension. 
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Time-complexity of Hamiltonian simulation

(I) Hilbert-space construction, 
(II) Hamiltonian generation,
(III)Observable computation.

Cumulative cost of Hamiltonian simulation 

An explicit comparison: for N = 20, 
Angular-momentum formulation (with Λ = N) 
requires 160 orders of magnitude larger 
computing resources than the LSH formulation, 
while the fermionic formulation requires 20 
orders of magnitude lesser resources than the 
LSH formulation.
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    Conclusion: 
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   Explicit calculations using the most convenient framework: Spectrum
N=6, PBC, the symmetry sector connected to strong coupling vacuum

x: dimensionless coupling



N=6, PBC, the symmetry sector connected to strong coupling vacuum   Explicit calculations using exact diagonalization

Effect of  
finite cut-off

Important to analyze for any 
bosonic 


Hilbert space

such as, LSH or angular 

momentum basis

Quantifying truncation error,

Asymptotic scaling 

behavior matches previous 
studies



x: dimensionless coupling

N=6, PBC, the symmetry sector connected to strong coupling vacuum

The dashed lines denote the first Λ values at which the 
corresponding scaled energies become equal or less 

than 10% of their values at Λ = 8 (which are 
approximated as the infinite cut-off)  

   Explicit calculations using exact diagonalization
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• bulk limit       outside the scope of exact diagonalization 
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   Explicit calculations using exact diagonalizationContinuum limit:

The asymptotic values 
of the quantity r, are 
obtained from an 
exponential fit.

Other technique: tensor network calculation: talk by Bapat, A

• bulk limit       outside the scope of exact diagonalization 

• weak coupling limit



  Remarks:

Hamiltonian simulation of non-Abelian LGT demands for convenient framework and basis.


With the original Kogut-Susskind formalism: beyond Schwinger model is extremely difficult.


Among many available formalisms of the theory, the Loop-String-Hadron formalism is 
demonstrated to be particularly useful.


Immediate and straightforward applications both in analog and digital simulation has 
demonstrated profound advantages over any other framework

arXiv:2009.13969
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Thank You Looking forward:   
                        LSH formalism of QCD
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