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Introduction
SU(2) gauge theory with Nf = 24 massless fermions
is expected to have an UV Landau pole and is
free at IR. With massive fermions the IR behaviour
changes: at energy scales � mf the fermions de-
couple and the system behaves as confining SU(2)
gauge theory. We demonstrate this cross-over on the
lattice using gradient flow coupling constant mea-
surements. We also measure the mass spectrum of
the model and verify that it matches free theory ex-
pectations at moderate quark masses.

Simulation setup
Lattice action: S = SG(U) + SF (V ) + cSW SSW(V ) on toroidal L4 lattices. SG is the Wilson gauge and
SF the Wilson fermion action with SU(2) gauge link matrix U in fundamental rep. and V a corresponding
HEX smeared [3] link. SSW is the clover term with SW coefficient cSW = 1 [6].
Hybrid Monte Carlo (HMC) algorithm using leapfrog integrator with unit-length trajectories and the
number of leapfrog steps adjusted to yield acceptance rates above 80%.
Simulations were carried out for L=32,40,48 with inverse bare couplings β=4/g2

0 ∈ {−0.25, 0.001, 0.25} and
the fermion hopping parameter κ chosen to obtain PCAC quark masses mq ∈ [0.01, 0.8].

Finite mass RG evolution
Running of coupling g2 and quark mass m under a
change of length-scale λ is governed by (BF-MOM
scheme [2]):

dg2

d log(λ) = −β(g2, λm) , d log(m)
d log(λ) = γ(g2, λm)

with beta function β and mass-anomalous dim. γ.
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Figure 1: 2-loop running coupling (top), 2-loop beta
function (middle) and 1-loop mass anomalous dimension
(bottom) in the BF-MOM scheme [2, 4].

Results I: gradient flow running coupling
We determine the gradient flow running coupling g2

GF(λL, L) as function of flow scale λL =
√

8 t on an
L = 48 hypercubic, toroidal lattice following the method described in [5]. The flow is governed by the
Lüscher-Weisz Symanzik action [1]. In Fig. 2 we show some results obtained by fitting the perturbative
running coupling discussed in Fig. 1 to our data for the gradient flow running coupling g2

GF. The quark
mass dependent change of slope of g2

GF as function of λL matches the expectations from perturbation
theory: for large mq the gradient flow coupling is on the rapidly increasing, confining pure gauge branch,
while for small mq it is on the decreasing, quasi-IR-free massless Nf = 24 branch.
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Figure 2: Fits of two-loop running coupling (black solid line) to corresponding gradient flow running coupling
(green band) for V = 484. Also shown are the curves for the corresponding asymptotic cases of zero-mass (long red
dashes) and pure gauge (short blue dashes). Lattice data is shown for λL ≥ 4.8 to avoid strong UV-cutoff effects.

Results II: mass spectrum
We have performed mass fits to Coulomb gauge fixed wall-wall pion-correlators on periodic L4 lattices with
L = 32, 40, 48, and plotted the results against the corresponding PCAC quark masses mq (from point-point
correlators). As shown in Fig. 3, in the range mq ∈ [0.1, 0.6], the pion mass dependency on mq is essentially
as in the case of free fermions: mπ = 2mq. Fig. 4 shows the pion mass in comparison to the square root of
the string tension σ and the tensor glueball mass mT2++2 on a L = 48 lattice.
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Figure 3: Pion mass mπ as function of the PCAC quark
mass mq on L4 lattice. The plateaus at small mq drop
faster than 1/L. Dashed line corresponds to mπ = 2mq.
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Figure 4: Pion mass mπ, tensor glueball mass mt2++2
and square root of string tension

√
σ as functions of the

PCAC quark mass mq for linear system size L = 48.

Conclusions
We have reviewed the running coupling of a SU(2) gauge theory with Nf = 24 massive fermions in BF-
MOM perturbation theory [2] and demonstrated that the predicted transition from behaving as the massless
theory in the UV (UV-Landau pole and IR-triviality) to behaving like pure gauge in the IR (confining) can
be well observed on the lattice in the evolution of the gradient flow running coupling. We have also shown
that, although the effective coupling is non-zero, the mass spectrum of the theory behaves as in the case of
quasi-free quarks for sufficiently small fermion masses (before decoupling).
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