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Introduction Simulation setup

SU(2) gauge theory with Ny = 24 massless fermions Lattice action: S = Sg(U) + Sr(V) + csw Ssw(V) on toroidal L* lattices. Sg is the Wilson gauge and
is expected to have an UV Landau pole and is | | Sy the Wilson fermion action with SU(2) gauge link matrix U in fundamental rep. and V a corresponding
free at IR. With massive fermions the IR behaviour | | HEX smeared [3] link. Sgw is the clover term with SW coefficient cgw = 1 [6].

changes: at energy scales < m the fermions de- Hybrid Monte Carlo (HMC) algorithm using leapfrog integrator with unit-length trajectories and the

couple and the system behaves as confining SU(2) number of leapfrog steps adjusted to yield acceptance rates above 80%.
gauge theory. We demonstrate this cross-over on the | | Simulations were carried out for L=32,40,48 with inverse bare couplings $=4/g3 € {—0.25,0.001,0.25} and
lattice using gradient flow coupling constant mea- the fermion hopping parameter s chosen to obtain PCAC quark masses m, € [0.01,0.8].

/

surements. We also measure the mass spectrum of
the model and verify that it matches free theory ex-
pectations at moderate quark masses. y

Results |: gradient flow running coupling

We determine the gradient flow running coupling gér(Ar, L) as function of flow scale A\, = /8¢ on an
Finite mass RG evolution L": 48 hypercubic, to.roidal. lattice following the method described in [5] The ﬂow is governed by t.he
, Liischer-Weisz Symanzik action [1]. In Fig. 2 we show some results obtained by fitting the perturbative
Running ot coupling g and quark mass m under a running coupling discussed in Fig. 1 to our data for the gradient flow running coupling g&r. The quark
change of length-scale A is governed by (BF-MOM mass dependent change of slope of g&r as function of Ar matches the expectations from perturbation
scheme |2]): theory: for large m, the gradient flow coupling is on the rapidly increasing, confining pure gauge branch,
dg? B(g%. Am) dlog(m) (4% Am) while for small m, it is on the decreasing, quasi-IR-free massless Ny = 24 branch.
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0 1 5 3 4 Figure 2: Fits of two-loop running coupling (black solid line) to corresponding gradient flow running coupling
7 (green band) for V = 48*. Also shown are the curves for the corresponding asymptotic cases of zero-mass (long red
0.06F dashes) and pure gauge (short blue dashes). Lattice data is shown for A > 4.8 to avoid strong UV-cutoff effects.
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ol O 7 We have performed mass fits to Coulomb gauge fixed wall-wall pion-correlators on periodic L* lattices with
5 | ) - L = 32,40,48, and plotted the results against the corresponding PCAC quark masses m, (from point-point
0.02f 7 correlators). As shown in Fig. 3, in the range m, € [0.1,0.6], the pion mass dependency on m,, is essentially
001l 7 as in the case of free fermions: m, = 2m,. Fig. 4 shows the pion mass in comparison to the square root of
// the string tension o and the tensor glueball mass mpoy119 on a L = 48 lattice.
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