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Figure 1: A schematic depiction of the relations between the different theoretical approaches
which we are using to describe the electronic properties of free-standing graphene.

teracting tight-binding model on the hexagonal lattice is written as: Ĥ = �
P

�,hx,yi(â
†
�,xâ�,y+

h.c) + 1
2

P
x,y Vx,y q̂xq̂y, where â†�,x, � =", # are the creation operators for the electrons, q̂x is the

electron charge operator, and  = 2.7 eV is the nearest-neighbor hopping parameter FFA: Next

nearest hopping matrix elements are an order of magnitude smaller. The matrix describing

two-body interactions, Vx,y, provides a general description of the electron-electron coupling.

As in the continuum, a perturbative series can be formulated also directly for this Hamiltonian,

referred to as lattice perturbation theory (LPT), which is a systematic expansion for a given

correlation function, organized in powers of V .

A schematic depiction of the relationships between the employed theoretical approaches

is shown in fig. 1: instead of a direct comparison of the continuum perturbative series with

experiment, we establish a link between them through the help of QMC. First, we compare

experimental data with the results of QMC calculations for the many-body Hamiltonian (thus

verifying its validity). The QMC results are then compared with the perturbative calculations in

both the continuum and lattice theory. The latter comparison reveals deficiencies in the EFT as

well as demonstrating the importance of higher-order perturbative corrections.

We concentrate on the study of the Fermi velocity vF . The renormalization of vF in the
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Suspended graphene with strong long range Coulomb interactions

Introduction

Since its experimental discovery in 2004 (1), graphene has attracted the attention of both the

condensed-matter and the high-energy physics community. This is partly due to the fact that

its low-energy electronic excitations can be described by a variant of quantum electrodynamics

(QED) (2). As the electronic properties of graphene can be probed experimentally, it provides

a unique opportunity to test the famous argument put forth by Dyson regarding the breakdown

of the QED perturbative expansion (3). In conventional QED, the perturbative series in the

fine-structure constant is asymptotic and gives increasingly accurate results up to a very large

order, roughly the value of the inverse fine-structure constant (⇡ 137). The action of the ef-

fective low-energy theory of graphene is written as S =
R
dtd

2
x(i ̄a�

0
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R
dtd

3
x(@iA0)2, where  a is a two-flavour, four-component Dirac spinor. The

effective fine-structure constant is rescaled by the ratio of the speed of light to the Fermi ve-

locity vF , which is roughly 300. It is thus thought that the perturbative series will display its

asymptotic behavior at much lower orders than ordinary QED, demonstrating the inadequacy

of perturbation theory. Ideally, the deviation between the perturbative results calculated within

the low-energy continuum theory and experimental data should give a clear indication about the

onset of this divergence (4).

Before one attempts such a comparison, one must be sure that suspended graphene, which

features the largest FFA you mean unscreened electron-electron interaction, is described by the

correct continuum field theory. This implies that other effects, such as the lattice scale physics

or disorder, are either unimportant, or can be incorporated into the effective field theory (EFT)

in a controlled way.

In the absence of a reliable continuum theory, the only way to proceed in a systematic man-

ner is through non-perturbative numerical calculations of the many-body Hamiltonian. The in-
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Effective QED in 2+1D with the fine structure constant 2. 
Thus free-standing graphene is an ideal playground to test the 
properties of asymptotic series in strongly-correlated QFT

α ≈

temperature effects. Due to the fact that we are simulating a finite volume, the resolution in

momentum is limited by the lattice size. Thus, the numerical differentiation needed for the

computation of vF brings about additional systematic errors (see supplementary material for

examples). For this reason, we prefer to plot the renormalized dispersion relation E(k) directly

wherever possible. Indeed, the logarithmic renormalization of the Fermi velocity, vF (k) =

vF,0(1 + C ln⇤/k), also leads to the logarithmic renormalization of the energy itself: E(k) =

E0(k)[1 + C(1 + ln⇤/k)], where E0(k) is the free dispersion relation. Thus we have a well

defined fitting function for the QMC and LPT data sets.

The renormalized dispersion relation for potential variants I and II is shown in fig. 2. Unlike

previous QMC studies (19), the lattice size appears to be large enough to clearly observe the

non-linear dispersion relation. For simulations on the 102 ⇥ 102 lattice, all points except for

the one closest to the Dirac point, are well-described by the logarithmic fit. This logarithmic

increase of the Fermi velocity in the infrared signals non-Fermi liquid behavior. The first point

trends upwards with respect to the logarithmic curve so that the entire data set is actually better

described by a power law fit. This confusing result can not be attributed to finite-size effects, as

the points on a 48⇥ 48 lattice with the same temperature do not demonstrate similar behaviour

(fig. 2b). They show only a small uniform shift from the 102 ⇥ 102 lattice data, with the first

point not special in any way. However, a comparison of the 48 ⇥ 48 lattice data, obtained at

two different temperatures (fig. 2c) helps to reveal that it is actually finite-temperature effects

which are responsible for this upward shift of the first point. Once we reduce both the inverse

temperature and the lattice size by a factor of two, we reproduce the same jump of the first

point with respect to the logarithmic curve, in comparison with the same lattice at a lower

temperature. Notably, further points do not experience sizeable finite-temperature or finite-size

effects, so we can reliable include them in our comparison with LPT and experiment.

A comparison with experiment is shown in fig. 3, where the QMC data is displayed along-
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Figure 9: Diagram corresponding to the RPA self-energy. Here we have omitted the sublattice
and p-h indices.
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Figure 10: Diagram expression for the bosonic propagator in the RPA approximation. The
polarization is calculated to first-order, which corresponds to the particle-hole bubble.
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Figure 11: Diagram expression for the particle-hole bubble which is the lowest order approxi-
mation to the polarization, P̂ .
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QMC vs Lattice Perturbation Theory: 
Higher order corrections beyond RPA 
level are important


