Abstract

The O(3) non-linear sigma model (NLSM) is a prototypical field theory for QCD and ferromagnetism, featuring topological qualities. Though the topological susceptibility χ_t should vanish in physical theories, lattice simulations of the NLSM find that χ_t diverges in the continuum limit. [1, 2] We study the effect of the gradient flow on this quantity using a Markov chain Monte Carlo method, finding that a logarithmic divergence persists. This result supports a previous study and indicates that either the definition of topological charge is problematic or the NLSM has no well-defined continuum limit. We introduce a θ -term and analyze the topological charge as a function of θ under the gradient flow for the first time.

Non-Linear σ Model

We study the O(3) non-linear sigma model (NLSM) in 1+1 dimensions, defined by the Euclidean action

$$S_{\rm E} = \frac{\beta}{2} \int d^2 x \left[(\partial_{\rm t} \vec{e})^2 + (\partial_{\rm x} \vec{e})^2 \right]$$

where

- ▶ \vec{e} is 3-component real vector constrained by $|\vec{e}| = 1$.
- \triangleright β is the inverse coupling constant.

Topology of 1+1 O(3) NLSM

- 1. Since the Lagrangian must disappear as $x \to \infty$, the field \vec{e} becomes uniform.
- 2. Therefore, we can envision 1+1 spacetime as a sphere.
- 3. The NLSM field \vec{e} becomes mapping between two Riemann spheres $(S^2 \rightarrow S^2)$.
- 4. Every configuration has an associated **topological** charge $Q \in \mathbb{Z}$ (see Fig. 1).
- 5. The ensemble has a **topological susceptibility** $\chi_t \equiv \left(\langle Q^2 \rangle - \langle Q \rangle^2 \right) / L^2$ which should disappear in the continuum limit.

The Gradient Flow

- Successful in removing χ_t divergence in QCD by reducing ultraviolet divergences.
- ▶ Introduces a new dimension, τ , called the "flow time," which pushes fields towards action minima

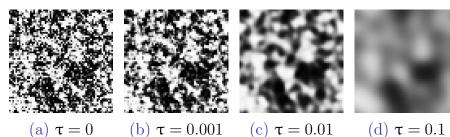


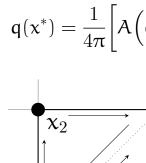
Figure 2: Visualization of gradient flow in ϕ^4 model

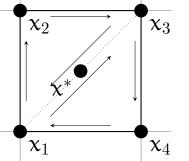
We generate lattice field configurations with a Markov Chain Monte Carlo method ▶ Metropolis algorithm on each site, forming a "**sweep**" of the lattice. ▶ Wolff cluster algorithm every five Metropolis sweeps

 \blacktriangleright Thermalize with 1,000 sweeps

► Sample every 50 sweeps to reduce autocorrelation the continuum limit.

Topological Charge on the Lattice





(a) a plaquette broken up into two triangles

Non-trivial theory

A nonzero θ implies nonzero $\langle Q \rangle$. Furthermore,

- [1] W. Bietenholz et al., Phys. Rev. D 98, 114501 (2018).
- [2] B. Berg and M. Lüscher, Nuclear Physics B **190**, 412 (1981).

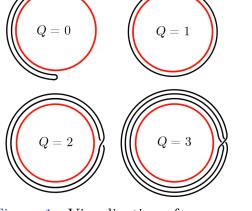


Figure 1: Visualization of homotopy group of $S^1 \rightarrow S^1$

Topology of the O(3) non-linear sigma model under the gradient flow

Stuart Thomas¹ Christopher Monahan^{1,2}

¹William & Mary ²Jefferson Lab

(b) after cluster flip

(a) before cluster flip

Figure 3: Visualization of Wolff cluster algorithm in ϕ^4 model

The ensemble has a topological susceptibility $\chi_t \equiv (\langle Q^2 \rangle - \langle Q \rangle^2) / L^2$ which should disappear in

Following [2], we define topological charge density $q(x^*)$ for each plaquette x^* such that

$$Q = \sum_{x^*} q(x^*)$$

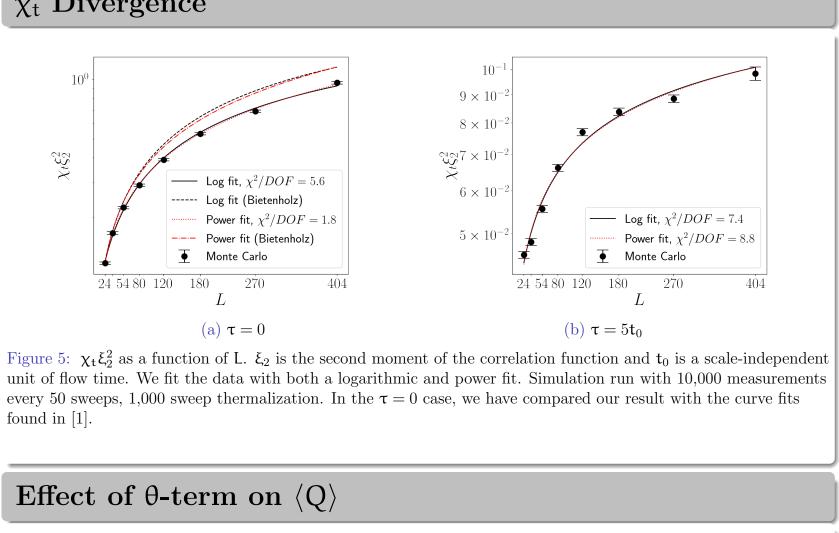
$$\vec{e}(x_1), \vec{e}(x_2), \vec{e}(x_3) + A\left(\vec{e}(x_1), \vec{e}(x_3), \vec{e}(x_4)\right)].$$

(b) signed area of triangle in target space

$$S[\vec{e}] \rightarrow S[\vec{e}] - i\theta Q[\vec{e}]$$

$$\chi_t \propto \left. \frac{d \, {\rm Im} \langle Q \rangle}{d \theta} \right|_{\theta=0}$$

χ_t Divergence



found in [1].

Effect of θ -term on $\langle Q \rangle$

Using the path integral formulation, we show that

$$\begin{split} \langle \mathbf{Q} \rangle_{\theta} &= \int \mathcal{D}\vec{e} \, \mathbf{Q}[\vec{e}] e^{-\mathbf{S}[\vec{e}] + \mathbf{i}\theta\mathbf{Q}[\vec{e}]} \\ &= \int \mathcal{D}\vec{e} \, \left(\mathbf{Q}[\vec{e}] e^{\mathbf{i}\theta\mathbf{Q}[\vec{e}]} \right) e^{-\mathbf{S}[\vec{e}]} \\ &= \langle \mathbf{Q}e^{\mathbf{i}\theta\mathbf{Q}} \rangle_{\theta=0} \end{split}$$

Therefore, the trivial Monte Carlo method can calculate topological observables, shown in Fig. 6. The increasing slope at $\theta = 0$ as $L \to \infty$ indicates a nonzero susceptibility in the continuum limit.

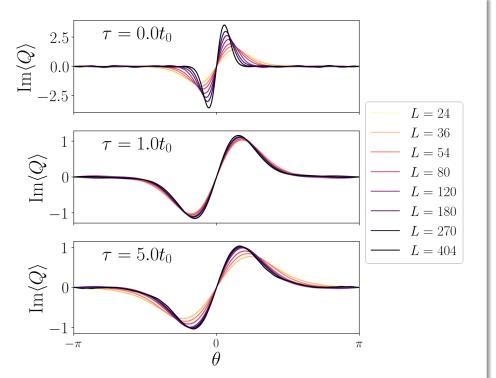


Figure 6: Nontrivial $Im\langle O \rangle$ as a function of θ . Simulation run with 10,000 measurements, every 50 sweeps, 1,000 sweep thermalization. Note the different scaling of the y-axis.

Conclusion

We have studied the topological properties of the 1+1 dimensional NLSM under the gradient flow. Berg & Lüscher [2] give three possible sources of divergence:

- 1. ultraviolet modes
- 2. the definition of \mathbf{Q} on the lattice is problematic
- 3. the NLSM has no well-defined continuum limit

Our result supports either options two or three, and requires further work to identify the physical mechanism underlying our results.

snthomas01@email.wm.edu