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I. INTRODUCTION

Electromagnetic polarizabilities are important properties that shed light on the internal structure of hadrons. The
quarks respond to probing electromagnetic fields, revealing the charge and current distributions inside the hadron.
There is an active community in nuclear physics partaking in this endeavor. Experimentally, polarizabilities are
primarily studied by low-energy Compton scattering. On the theoretical side, a variety of methods have been employed
to describe the physics involved, from phenomenological models [1, 2], to chiral perturbation theory (ChPT) [3–5]
or chiral e↵ective field theory (EFT) [6, 7], to lattice QCD. Reviews of the experimental status can be also found in
Refs. [3, 7].
Understanding electromagnetic polarizabilities has been a long-term goal of lattice QCD. The challenge lies in

the need to apply both QCD and QED principles. The standard tool to compute polarizabilities is the background
field method which has been widely used [8–26]. Methods to study higher-order polarizabilities have also been
proposed [27–30] in this approach. Although such calculations are relatively straightforward, requiring only two-point
functions, there are a number of unique challenges. First, since weak fields are needed, the energy shift involved is
very small relative to the mass of the hadron (on the order of one part in a million depending on field strength). This
challenge has been successfully overcome by relying on statistical correlations with or without the field. Second, there
is the issue of discontinuities across the boundaries when applying a uniform field on a periodic lattice. This has been
largely resolved by using quantized values for the fields. Third and more importantly, a charged hadron accelerates in
electric field and and exhibits Landau levels in magnetic field. Such motions are unrelated to polarizability and must be
isolated from the deformation due to quark and gluon dynamics inside the hadron. For this reason, most calculations
have focused on neutral hadrons. Since standard plateau technique of extracting energy from the large-time behavior
of the two-point correlator fails for charged hadrons, special techniques are needed to filter out the collective motion of
the system in order to extract polarizabilities [14, 31–33].
In this work, we examine the use of four-point functions to extract polarizabilities. As we shall see, the method

is ideally suited to charged hadrons; there is no background field to speak of. Furthermore, the method directly
mimics the Compton scattering process on the lattice. Although four-point correlation functions have been applied
to various aspects of hadron structure [34–39], not too much attention has been paid to its potential application for
polarizabilities. The only work we are aware of are two attempts 25 years ago, one based in position space [40], one in
momentum space [41]. Here we want to take a fresh look at the problem.

II. CHARGED PION

A. Electric polarizability

For this part, we follow closely the notations and conventions of Ref. [41]. The central object is the time-ordered
Compton scattering tensor defined by the four-point correlation function1,

Tµ⌫ = i

Z
d4xeik2·x(⇡(p2)|Tjµ(x)j⌫(0)|⇡(p1)) (1)

where the electromagnetic current density

jµ = quū�µu+ qdd̄�µd, (2)

built from up and down quark fields (qu = 2/3, qd = �1/3). The function is represented in Fig. 1. We work with a
special kinematical setup called zero-momentum Breit frame given by,

p1 = (m,~0),

k1 = (0,~k), k2 = (0,~k), ~k = kẑ, k ⌧ m,

p2 = �k2 + k1 + p1 = (m,~0),

(3)

Essentially it can be regarded as forward double virtual Compton scattering. This is di↵erent from the real Compton
scattering in experiments. They access the same low energy constants including the polarizabilities.

1 We use round brackets (· · · | · · · ) to denote continuum matrix elements, and angle brackets · · · | · · · lattice matrix elements.
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FIG. 1. Pictorial representation of the four-point function in Eq.(1) for ⇡+ (for proton imagine two u and one d quark lines).
Time flows from right to left and the four-momentum conservation is p2 + k2 = k1 + p1.

On the phenomenological level, the process can be described by an e↵ective relativistic theory to expose its physical
content. The tensor can be parametrized to second order in photon momentum by the general form,

p
2E12E2 Tµ⌫ = �Tµ(p1 + k1, p1)T⌫(p2, p2 + k2)

(p1 + k1)2 �m2
� Tµ(p2, p2 � k1)T⌫(p1 � k2, p1)

(p1 � k2)2 �m2

+ 2gµ⌫ +A(k21gµ⌫ � k1µk1⌫ + k22gµ⌫ � k2µk2⌫) +B(k1 · k2gµ⌫ � k2µk1⌫)

+ C(k1 · k2QµQ⌫ +Q · k1Q · k2gµ⌫ �Q · k2Qµk1⌫ �Q · k1Q⌫k2µ),

(4)

where Q = p1 + p2 and A, B, C are constants to be characterized. We use a non-covariant normalization

X

n

Z
d3p

(2⇡)3
|n(p) n(p)| = 1, (5)

which is why the square root factor is in front of Tµ⌫ . The pion electromagnetic vertex with momentum transfer
q = p0 � p is written as

Tµ(p
0, p) = (p0µ + pµ)F⇡(q

2) + qµ
p02 � p2

q2
(1� F⇡(q

2)). (6)

It satisfies qµTµ(p0, p) = p02 � p2 for o↵-shell pions, which is needed for the Ward-Takahashi identity. The pion form
factor to 4th order in momentum is given by

F⇡(q
2) = 1 +

r2

6
q2 +

r4

120
q4, (7)

where r2 is the squared charge radius and q2 = �~q 2 < 0 is spacelike momentum transfer squared. The form in
Eq.(4) can be entirely motivated by general principles of Lorentz invariance, gauge invariance, current conservation,
time-reversal symmetry, and crossing symmetry [3]. In fact, current conservation (kµ1Tµ⌫ = k⌫2Tµ⌫ = 0) immediately
leads to A being related to charge radius by A = r2 /3. The first three terms in Eq.(4) are the Born contributions to
scattering from the pion and the remaining three are contact terms. The electric polarizability, ↵E , and magnetic
polarizability, �M , terms come from B and C,

↵E ⌘ �↵

✓
B

2m
+ 2mC

◆
,�M ⌘ ↵

B

2m
. (8)

For electric polarizability, we work with the µ = ⌫ = 0 component of Eq.(4). Under the special kinematics in Eq.(3),

it can be written to order ~k 2 in the form,

T00(~k) =
4m⇡

~k 2
+

✓
1

m⇡
� 4

3
m⇡ r2

◆
+


� r2

3m⇡
+

1

9
m⇡ r2 2 +

1

15
m⇡ r4 +

↵⇡
E

↵

�
~k 2

⌘ TBorn
00 (~k) +

↵⇡
E

↵
~k 2,

(9)

where we separate the Born contribution from the contact term.
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The next step is to relate the polarizabilities to lattice matrix elements. To this end, we need to convert from
continuum to a lattice of isotropic spacing a with Ns = Nx ⇥ Ny ⇥ Nz number of spatial sites by the following
correspondence,

|n(p)) ! V 1/2|n(p) , jµ(x) !
ZV

a3
jLµ (x),

Z
d4x ! a4

Z 1

�1
dt

X

~x

, (10)

where V = Nsa3 and the superscript L denotes they are lattice version of the continuum entities. We are still in
Minkowski spacetime. We keep the time continuous but dimensionless for convenience in the following discussion. The
renormalization factor ZV for the lattice current jLµ = (⇢L,~jL) can be taken to be unity if conserved currents are used
on the lattice. Eq.(1) becomes,

Tµ⌫ = i Nsa

Z
dt

X

~x

eik2·x ⇡(p2)|TjLµ (x)jL⌫ (0)|⇡(p1) . (11)

On the lattice, there is a contribution to this function when p1 = p2, called a vacuum expectation value (or VEV),
that must be subtracted out. The reason is we are interested in di↵erences relative to the vacuum, not the vacuum
itself. Formally, this is enforced by requiring normal ordering instead of time ordering in Eq.(11),

: jLµ (x)j
L
⌫ (0) := TjLµ (x)j

L
⌫ (0)� 0|TjLµ (x)jL⌫ (0)|0 . (12)

For electric polarizability, the relevant component is T00 which amounts to the overlap of charge densities. By
inserting a complete set of intermediate states, making use of translation invariance of the lattice current, and
integrating over time, we arrive at the subtracted correlator 2

T00 = 2N2
s

X

n

| ⇡(~0)|⇢L(0)|n(~q) |2

En �m⇡
� 2N2

s

X

n

| 0|⇢L(0)|n(~q) |2

En

⌘ T elas
00 + T inel

00 ,

(13)

where the elastic part (n = ⇡) is separated from the inelastic part as,

T elas
00 ⌘ 2N2

s
| ⇡(~0)|⇢L(0)|⇡(~q |2

E⇡ �m⇡
. (14)

The matrix element

⇡(~0)|⇢L(0)|⇡(q) =
1

Ns

E⇡ +m⇡p
2E⇡2m⇡

F⇡(q
2), (15)

is related to the pion form factor F⇡ given in Eq.(7). It turns out the Born term TBorn
00 in the continuum cancels

exactly the elastic term T elas
00 on the lattice. So the matching produces

T inel
00 (~q) =

↵E

↵
~q 2, (16)

or a formula for charged pion electric polarizability on the lattice,

↵⇡
E =

↵

~q21

⇥
T00(~q1)� T elas

00 (~q1)
⇤
, (17)

where ~q1 emphasizes that the formula is valid for the smallest non-zero spatial momentum on the lattice.

2 In this work we use ~k to denote continuum momentum and ~q lattice momentum with the same physical unit. When we match the two
forms we set ~k = ~q and express the result in terms of ~q.
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B. Magnetic polarizability

Magnetic polarizability proceeds in a similar fashion, except we consider the spatial component T11 (T22 gives the
same result). Under the same kinematics given in Eq.(3), this component from the general form in Eq.(4) reads

T11 = � 1

m⇡
+ ~k 2

✓
r2

3
+

�M

↵

◆
. (18)

On the other hand, from the lattice four-point function in Eq.(11), we have,

T11 = i Nsa

Z 1

�1
dt

X

~x

eik2·x ⇡(p2)|TjL1 (x)jL1 (0)|⇡(p1) . (19)

Here we examine its context in more detail. Similar steps were used in the electric case [41]. These steps, together
with VEV subtraction, lead to

T11(~q) = 2N2
s

X

n,s

| ⇡(~0)|jL1 (0)|n(s, ~q |2

En �m⇡
� 2N2

s

X

n,s

| 0|jL1 (0)|n(s, ~q |2

En
. (20)

Note that the elastic piece (n = ⇡) in the sum vanishes under the special kinematics,

⇡(~0)|jL1 (0)|⇡(~q, s) = 0. (21)

The reason is that the matrix element is proportional to (~0 + ~q)1 in 1-direction but momentum ~q is in 3-direction.
For the inelastic contributions, the types of intermediate state contributing are vector or axial vector mesons [41].

There is no need to analyze the matrix elements explicitly as done in Ref. [41] for the electric case. We only need to
know that the inelastic part can be characterized up to order ~q 2 by the form,

T11(~q) ⌘ T11(~0) + ~q 2K11, (22)

with T11(~0) and K11 to be related to physical parameters and determined on the lattice. Note that we deliberately use
the full amplitude label T11 instead of T inel

11 since the elastic part is zero.
Matching the full amplitude on the lattice in Eq.(18) with the continuum version in Eq.(22), we obtain two relations,

� 1

m⇡
= T11(0), (23)

r2

3m⇡
+

�M

↵
= K11. (24)

The first relation is a sum rule at zero momentum. The second leads to a formula for charged pion magnetic
polarizability,

�⇡
M = ↵


� r2

3m⇡
+

T11(~q1)� T11(0)

~q21

�
, (25)

where ~q1 is the lowest momentum on the lattice. Compared to charged pion electric polarizability ↵⇡
E in Eq.(17), we

see that instead of subtracting the elastic contribution, we subtract the zero-momentum inelastic contribution in the
magnetic polarizability. In other words, there is no zero-momentum contribution in ↵⇡

E , and no elastic contribution in
�⇡
M .

III. PROTON

A. Electric polarizability

We start with a general proton Compton tensor parameterized to second order in photon momentum,
p
2E12E2 Tµ⌫ = TBorn

µ⌫ +B(k1 · k2gµ⌫ � k2µk1⌫)

+ C(k1 · k2QµQ⌫ +Q · k1Q · k2gµ⌫
�Q · k2Qµk1⌫ �Q · k1Q⌫k2µ),

(26)
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where Q = p1 + p2. For Born term we take from Ref. [42],

TBorn
µ⌫ =

Bµ⌫(p2, k2, s2|p1, k1, s1)
m2

p � s
+

B⌫µ(p2,�k1, s2|p1,�k2, s1)

m2
p � u

, (27)

where the function is (note a factor of 1/2 di↵erence between our definition and Ref. [42]),

Bµ⌫(p2, k2, s2|p1, k1, s1) = ū(p2, s2)�µ(�k2)( 6P +mp)�⌫(k1)u(p1, s1). (28)

Here P = p2 + k2 = p1 + k1 is the standard 4-momentum conservation for Compton scattering. There is no A term
here because the proton Born terms obey current conservation, unlike the pion case in Eq.(4). The B and C are still
related to polarizabilities as in Eq.(8).

The Born amplitude has virtual (or o↵-shell) intermediate hadronic states in the s and u channels, whereas on the
lattice we have real (or on-shell) intermediate states. This will produce a di↵erence with the elastic contribution to be
discussed later. The vertex function is defined by

�µ(k) = �µF1 +
iF2

2mp
�µ�k

�, (29)

where summation over � is implied. Specializing to our kinematics in Eq.(3), we have

s = (p1 + k1)
2 = m2

p � ~k 2,

u = (p1 � k2)
2 = m2

p � ~k 2,
(30)

We consider the unpolarized Born expression given by

2mpT
Born
µ⌫ =

1

2

X

s1,s2

1
~k 2


ū(~0, s2)

✓
�µF1 �

iF2

2mp
�µ�k

�
2

◆
( 6p1 + 6k1 +mp)

✓
�µF1 +

iF2

2mp
�µ�k

�
1

◆
u(~0, s1) (31)

+ū(~0, s2)

✓
�⌫F1 +

iF2

2mp
�⌫�k

�
1

◆
( 6p1 � 6k2 +mp)

✓
�⌫F1 �

iF2

2mp
�⌫�k

�
2

◆
u(~0, s1)

�
.

The Dirac form factors then take the forms,

F1 =
GE + ⌧GM

1 + ⌧
= 1 +

✓


4m2
p

� r2E
6

◆
~k 2 + · · · , (32)

F2 =
GM �GE

1 + ⌧
= +

1

12

✓
� 3

m2
p

+ 2 r2E � 2(1 + ) r2M

◆
~k 2 + · · · , (33)

where ⌧ = ~k 2/(4m2
p)� ~k 4/(16m4

p). The final result is

TBorn
00 (~k) =

4mp

~k 2
� 4

3
r2E mp +


� (2 + )

4m3
p

+
mp

45

�
5 r2E

2 + 3 r4E
��

~k 2 + · · · . (34)

Including the contact interaction term, the full amplitude in the continuum takes the form,

T00(~k) = TBorn
00 (~k) + ~k 2↵

p
E

↵
. (35)

On the other hand, we consider the unpolarized four-point function of the proton in lattice regularization,

Tµ⌫ = i Nsa
1

2

X

s1,s2

Z 1

�1
dt

X

~x

eik2·x p2, s2|
⇥
TjLµ (x)j

L
⌫ (0)� 0|TjLµ (x)jL⌫ (0)|0

⇤
|p1, s1 , (36)

where the VEV subtraction is included. After inserting a complete set of intermediate states,

X

N,~pN ,sN

|(EN , ~pN ), sN (EN , ~pN ), sN | = 1, (37)
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and specializing to the zero-momentum Breit frame, we have

Tµ⌫ =N2
s

X

N,s1,s2,sN

1

EN �mp
(mp,~0), s2|jLµ |(EN , ~q), sN ) (EN , ~q), sN )|jL⌫ |(mp,~0), s1

�N2
s

X

N,s1,s2,sN

1

EN
0|jLµ (0)|(EN , ~q), sN ) (EN , ~q), sN )|jL⌫ (0)|0 .

(38)

Due to the vector nature of the electromagnetic current, the only intermediate states that can contribute are spin-1/2
and spin-3/2 states. We separate o↵ the elastic part (N=proton),

T elas
µ⌫ ⌘ N2

s

X

s1,s2,sp

1

Ep �mp
(mp,~0), s2|jLµ |(Ep, ~q), sp) (Ep, ~q), sp)|jL⌫ |(mp,~0), s1 . (39)

The remaining inelastic part will be related to polarizabilities. The connection between the lattice and continuum
matrix elements is

p0, s0|jLµ (0)|p, s =
1

Ns

(p0, s0|jµ(0)|p, s)p
2Ep2Ep0

. (40)

Using the continuum definition of form factors (q = p0 � p),

(p0, s0|jµ|p, s) = ū(p0, s0)

✓
�µF1 +

iF2

2mp
�µ�q

�

◆
u(p, s), (41)

the elastic part can be written as

T elas
µ⌫ =

X

s1,s2

1

4mpEp(Ep �mp)
ū(~0, s2)

✓
�µF1 �

iF2

2mp
�µ�q

�

◆
(6 q +mp)

✓
�⌫F1 +

iF2

2mp
�⌫�q

�

◆
u(~0, s2). (42)

For electric polarizability, we are interested in the µ = ⌫ = 0 component of Eq.(42),

T elas
00 =

X

s1,s2

1

4mpEp(Ep �mp)
ū(~0, s2)

✓
�0F1 �

iF2

2mp
�03q

◆
(�0Ep + �3q +mp)

✓
�0F1 +

iF2

2mp
�03q

◆
u(~0, s2), (43)

where q refers to the spatial momentum in the z-direction ~q = qẑ. It evaluates to order ~q 2 as,

T elas
00 (~q) =

4mp

~q 2
� 4

3
r2E mp +


1

4m3
p

+
1

45

�
5 r2E

2 + 3 r4E
��

~q 2 + · · · .

Matching the lattice and continuum forms and subtracting o↵ the elastic contribution, we have

T00(~q)� T elas
00 (~q) = TBorn

00 (~q)� T elas
00 (~q) + ~q 2↵

p
E

↵
. (44)

Many terms cancel between TBorn
00 and T elas

00 , leaving the di↵erence,

T00(~q)� T elas
00 (~q) = � (1 + )2

4m3
p

~q 2 +
↵p
E

↵
~q 2, (45)

from which we arrive at a final formula for proton electric polarizability,

↵p
E = ↵


(1 + )2

4m3
p

+
T00(~q1)� T elas

00 (~q1)

~q 2
1

�
. (46)

Here we emphasize that the expression must be evaluated using the smallest non-zero momentum ~q1 on the lattice.
Compared to charged pion electric polarizability ↵⇡

E in Eq.(17), proton ↵p
E has an extra term that has its magnetic

moment and mass. In this sense, proton’s electric and magnetic properties are coupled. Both mp and  have to be
measured at the same time as T00 in order to extract ↵p

E .
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B. Magnetic polarizability

For the Compton amplitude in the continuum, we start with the µ = ⌫ = 1 component of Eq.(31) (22 component
gives the same result),

2mpT
Born
11 =

1

2k2

X

s1,s2


ū(~0, s2)

✓
�1F1 �

iF2

2mp
�13k

◆
(47)

(�0mp + �3k +mp)

✓
�1F1 +

iF2

2mp
�13k

◆
u(~0, s1)

+ū(~0, s2)

✓
�1F1 +

iF2

2mp
�13k

◆

(�0mp � �3k +mp)

✓
�1F1 �

iF2

2mp
�13k

◆
u(~0, s1)

�
.

It evaluates to

TBorn
11 (~k) =

(2 + )

mp
+ ~k 2

✓
� 

2m3
p

+
r2E
3mp

� r2M
3mp

(1 + )2
◆
. (48)

Including the contact interaction term, the full amplitude in the continuum becomes

T11(~k) = TBorn
11 (~k) + ~k 2 �

p
E

↵
. (49)

On the lattice, we start with the µ = ⌫ = 1 component of Eq.(42),

T elas
11 =

X

s1,s2

1

4mpEp(Ep �mp)
ū(~0, s2)

✓
�1F1 �

iF2

2mp
�13q

◆
(�0Ep + �3q +mp)

✓
�1F1 +

iF2

2mp
�13q

◆
u(~0, s2). (50)

It evaluates to

T elas
11 (~q) =

(1 + )2

mp
+ ~q 2

✓
� (1 + )

2m3
p

� r2M
3mp

(1 + )2
◆
. (51)

We see that unlike charged pion, there is an elastic contribution for the proton magnetic case.
The inelastic 11 component in Eq.(38) can be formally characterized as a constant plus a linear term in ~q 2,

T inel
11 (~q) ⌘ T inel

11 (~0) + ~q 2K11, (52)

with T inel
11 (~0) and K11 to be matched with physical parameters. The di↵erence between the Born term in the continuum

and the elastic term on the lattice is (~k ! ~q in Born)

TBorn
11 � T elas

11 = � 1

mp
+ ~q 2

✓
1

2m3
p

+
r2E
3mp

◆
, (53)

where the  terms in the zero-momentum part cancel, as well as the magnetic charge radius terms in the ~q 2 part.
By matching the full T11 in the continuum and on the lattice, we have,

T elas
11 (~q) + T inel

11 (~0) + ~q 2K11 = TBorn
11 (~q) + ~q 2 �

p
M

↵
. (54)

Using Eq.(53), we obtain two relations,

T inel
11 (0) = � 1

mp
, (55)

K11 =
1

2m3
p

+
r2E
3mp

+
�p
M

↵
. (56)
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We see the same sum rule in the first relation as Eq.(23) for charged pion. The second relation produces an expression
for proton magnetic polarizability on the lattice,

�p
M = ↵

"
� 1

2m3
p

� r2E
3mp

+
T inel
11 (~q1)� T inel

11 (~0)

~q 2
1

#
, (57)

where we have used Eq.(52) for K11.
It turns out there is no elastic part to the zero momentum amplitude T11(~0). There is a subtlety here. If we do

the analytic time integral first, then set ~q = 0, we get T elas
11 (~0) = (1 + )2/mp from Eq.(51). However, if we first set

~q = 0, the integrand itself vanishes, so T clas
11 (~0) = 0. This is the way it is done on the lattice in a numerical sense as we

will see in Eq.(69). So we can drop the reference to the inelastic part T inel
11 (~0) ! T11(~0). Using the full amplitude T11

defined in Eq.(38), we write the final lattice formula for proton magnetic polarizability as,

�p
M = ↵


� 1

2m3
p

� r2E
3mp

+
T11(~q1)� T elas

11 (~q1)� T11(~0)

~q 2
1

#
. (58)

Compared to charged pion magnetic polarizability �⇡
M in Eq.(25), proton �p

M has two extra terms: a mass contribution
and an elastic contribution. Both terms, along with the rE term, must be measured at the same time as T11 in order
to extract �p

M .

IV. LATTICE MEASUREMENT

Having obtained polarizability formulas in Eq.(17) and Eq.(25) for charged pion, and Eq.(46) and Eq.(58) for proton,
we now discuss how to measure them in lattice QCD. First, we need to match the kinematics used in deriving the
expressions, i.e., with hadrons at rest and photons having spacelike momentum in the z-direction 3,

p1 = (mh,~0),

q1 = (0, qẑ), q2 = (0,�qẑ), q ⌧ mh,

p2 = q2 + q1 + p1 = (mh,~0),

(59)

as illustrated in Fig 2. It is the same kinematics as in Eq. (3) but expressed di↵erently to match what is being done on

FIG. 2. Zero-momentum Breit frame in Eq.(59) used in extracting charged pion polarizabilities from four-point functions on the
lattice (for proton imagine three quark lines). Time flows from right to left and the four momentum conservation is expressed as
p2 = q2 + q1 + p1.

the lattice. One may think of Fig 2 as having ‘internal’ photons whereas Fig 1 as having ‘external’ photons.
We construct the Euclidean four-point current-current correlation function,

Pµ⌫(~x2, ~x1, t2, t1) ⌘
P

~x3,~x0
0| †(x3) : jLµ (x2)jL⌫ (x1) :  (x0)|0P

~x3,~x0
0| †(x3) (x0)|0

, (60)

3 For general discussion, we use h to represent either charged pion or proton.
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for charged pion, and

↵p
E =

4

9
↵uu
E +

1

9
↵dd
E � 4

9
↵ud
E ,�p

M =
4

9
�uu
M +

1

9
�dd
M � 4

9
�ud
M , (72)

for proton. Specifically, the quark flavor labels uu, dd, ud, and ud̄ refer to contributions in Eq.(63) and Eq.(64) without
the charge factors which have been pulled out in Eq.(71) and Eq.(72).

V. CONCLUSIONS AND ACKNOWLEDGEMENTS
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where the two-point function is for normalization,  the interpolating field of the hadron, and normal ordering is used
to include the VEV contribution. In the case of proton, sum over final spin and average over initial spin are assumed
for unpolarized measurement. The spatial sums over ~x3 and ~x0 project to zero momentum at the sources which are
located at fixed times t3 and t0. Time flows from right to left t3 > t1,2 > t0 and t1,2 indicates the two possibilities
of time ordering. When the times are well separated (defined by the time limits t3 � t1,2 � t0) the correlator is
dominated by the ground state,

Pµ⌫(~x2, ~x1, t2, t1) ! h(~0)| : jLµ (x2)j
L
⌫ (x1) : |h(~0)

= h(~0)|TjLµ (r)jL⌫ (0)|h(~0) � 0|TjLµ (r)jL⌫ (0)|0 ,
(61)

where translation invariance has been used to shift the bilinear to r = x2 � x1 and 0. To implement the special
kinematics in Fig. 2 we consider the Fourier transform

Qµ⌫(~q, t2, t1) ⌘ Ns

X

~r

e�i~q·~rPµ⌫(~x2, ~x1, t2, t1), (62)

where ~q is lattice momentum and ~r = ~x2 � ~x1 is the relative distance between the current insertions. The need for
Fourier transform is natural in the sense that the polarizability formulas are derived in momentum space. In this work
we only consider the diagonal components (µ = ⌫) of Qµ⌫(~q, t2, t1). Assuming the time separation t = t2 � t1 > 0 and
inserting a complete set of intermediate states, the expression in the same time limits develops the time dependence,

Qµµ(~q, t) = N2
s

X

n

| h(~0)|jLµ (0)|n(~q) |2e�a(En�mh)t

�N2
s

X

n

| 0|jLµ (0)|n(~q) |2e�aEnt. (63)

The elastic contribution (n = h) in the expression can be separately defined,

Qelas
µµ (~q, t) ⌘ N2

s | h(~0)|jLµ (0)|h(~q) |2e�a(Eh�mh)t. (64)

We see that the elastic piece in the four-point function has information on the form factors of the hadron through the
amplitude and can be isolated at large time separations of the currents.

Charged pion electric polarizability in Eq.(17) is measured on the lattice by

↵⇡
E =

2↵a

~q 2
1

Z 1

0
dt

⇥
Q00(~q1, t)�Qelas

00 (~q1, t)
⇤
. (65)

Charged pion magnetic polarizability in Eq.(25) is measured on the lattice by

�⇡
M = ↵

⇢
� r2E
3m⇡

+
2a

~q 2
1

Z 1

0
dt

h
Q11(~q1, t)�Q11(~0, t)

i�
, (66)

where Q11(~q1, t) is the 11 component of Eq.(63). Unlike the electric case where the elastic contribution is subtracted in
the time integral, the magnetic case has the zero-momentum inelastic contribution subtracted. The expression contains
the electric charge radius rE contribution which has to be added to the time integral. This makes the extraction of
�⇡
M more complicated than ↵⇡

E . Fortunately, four-point function Q00(~q1, t) already contains information on the form
factor in its elastic limit [44, 45].

We now turn to the proton. The electric polarizability in Eq.(46) can be measured on the lattice by

↵p
E = ↵

⇢
(1 + )2

4m2
p

+
2a

~q 2
1

Z 1

0
dt

⇥
Q00(~q1, t)�Qelas

00 (~q1, t)
⇤�

, (67)

and the magnetic polarizability in Eq.(58) by

�p
M = ↵

⇢
� 1

2m3
p

� r2E
3mp

+
2a

~q 2
1

Z 1

0
dt

h
Q11(~q1, t)�Qelas

11 (~q1, t)�Q11(~0, t)
i�

. (68)

Most of the above-mentioned arguments for charged pion apply also to the proton. The di↵erence is they additionally
involve the proton mass (mp) and its anomalous magnetic moment (). Both need to be measured along with the time
integral on the same lattice. The mass can be readily obtained from the two-point function which is already used in
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FIG. 3. Quark-line diagrams of a four-point function contributing to polarizabilities of a meson: (a) di↵erent flavor, (b) same
flavor, (b) same flavor Z-graph, (d) single-flavor double-current loop, (e) single disconnected loop, (f) double disconnected loops.
In each diagram, flavor permutations are assumed as well as gluon lines that connect the quark lines.

Eq.(60) for normalization. Excellent signal is expected for the mass measurement since well-separated zero momentum
sources are used. Although only the Q00 component is needed for the time integral for ↵p

E , the elastic part of Q11

component is required for the anomalous magnetic moment term in ↵p
E ,

Qelas
11 (~q1, t) ���!

t�1

(1 + )2

4m2
p

~q 2
1 e

�a(Ep�mp)t. (69)

Since Q11 component is needed anyway in the calculation of �p
M , the two measurements complement each other. The

same is true of the charge radius term in �p
M which can be accessed through the unpolarized elastic part of Q11,

Qelas
00 (~q1, t) ���!

t�1


1� ~q 2

1

12m2
p

(3 + 4m2
p r2E )

�
e�a(Ep�mp)t. (70)

The close coupling between the electric and magnetic suggests that it is most e�cient to measure the two polarizabilities
together, with associated mass, charge radius, and magnetic moment in the same simulation. In practice, this should
be done on a configuration by configuration basis to maintain correlations.

Wick contractions of quark-antiquark pairs in the unsubtracted part lead to topologically distinct quark-line diagrams
shown in Fig. 3. Diagrams (a), (b), and (c) are connected. Diagram (d) has a loop that is disconnected from the
hadron, but connected between the two currents. Diagrams (e) has one disconnected loop (also known as all-to-all
propagator) and diagram (f) has two such loops. Furthermore, diagrams (d), (e) and (f) must have associated VEV
subtracted. However, if conserved lattice current density is used, there is no need for subtraction in diagram (e) since
the VEV vanishes in the configuration average [46].

According to Eq.(2), the full hadron polarizabilities can be broken down to contributions from various quark flavor
current-current correlations. Assuming isospin symmetry in u and d quarks, we have

↵⇡
E =

5

9
↵uu
E +

4

9
↵ud̄
E , �⇡

M =
5

9
�uu
M +

4

9
�ud̄
M , (71)

for charged pion, and

↵p
E =

4

9
↵uu
E +

1

9
↵dd
E � 4

9
↵ud
E ,�p

M =
4

9
�uu
M +

1

9
�dd
M � 4

9
�ud
M , (72)


