
dCache bulk requests
Paul Millar

on behalf of the dCache team

DOMA-TPC
2021-02-10

https://indico.cern.ch/event/1006673/

 dCache: Bulk request API| | 2021-02-10 | 2

dCache REST API: why and what
● Avoid non-standard protocol extensions:

● Avoid shoe-horning dCache concepts into existing protocols
● “dot commands” in NFS, POST requests in WebDAV,

the -X “magic” in dcap commands, SITE commands in FTP, …
● Follow best practice for REST APIs.
● No direct data access; use WebDAV (…) instead.
● Well documented: both machine and human readable
● Seems to be well-received:

JavaScript client. Sites started integrating it into their tools.

 dCache: Bulk request API| | 2021-02-10 | 3

Limitation with a REST API
● Best practice: URL defines the resource on which to

operate.
● HTTP requests can have only one URL.
● Single file requests are a major bottleneck:

● SRM supports bulk operations, for very good reasons.
● For example, SRM is orders-of-magnitude faster at deleting

files than any single-file protocol alternative.
● CTA came up with an (undocumented) extension that adds

bulk requests to the xroot protocol.
● So, we need to “fix” this for REST API.

 dCache: Bulk request API| | 2021-02-10 | 4

REST Bulk request API
● Extension to existing REST API

● Do not break existing clients.
● Protocol documented in a Google docs.

● This describes client interactions: what the client can expect:
user interactions and a processing model.

● It does NOT describe how this is implemented.
● https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrWtWchR-PJhxdunT8/edit?usp=sharing

● (Again) Try to follow best practice.
● Try to fold in our experience from SRM.

https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrWtWchR-PJhxdunT8/edit?usp=sharing
https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrWtWchR-PJhxdunT8/edit?usp=sharing
https://docs.google.com/document/d/14sdrRmJts5JYBFKSvedKCxT1tcrWtWchR-PJhxdunT8/edit?usp=sharing

 dCache: Bulk request API| | 2021-02-10 | 5

REST Bulk: core concepts
● Bulk operation:

the general idea of asking that something happens to
multiple files stored in dCache.

● Activity:
a simple, well-defined operation that affects files individually
(e.g., stage, pin, delete) or a set of files collectively (e.g.,
create concatenated file, create an archive).

● Bulk request:
A specific request to dCache make by a specific user that
targets a specific set of files, with a specific activity.

 dCache: Bulk request API| | 2021-02-10 | 6

REST Bulk: goals
It should be possible to …

● target an arbitrary list of files.
● target a directory and everything in it (direct children or

recursively).
● extend the list of supported activities without breaking existing

clients.
● make other requests while a bulk request is processed.
● check the progress of a bulk request.
● cancel a bulk request.
● learn the final result of a request, even when cancelled.
● discover all on-going and completed bulk requests.

 dCache: Bulk request API| | 2021-02-10 | 7

REST Bulk: non-goals

● The API does not allow you to …
● make a bulk request with multiple activities.
● cancel only part of a bulk request.
● Revert/undo the activity when cancelling a bulk request.
● receive asynchronous notification … (at least, not yet) 😄

 dCache: Bulk request API| | 2021-02-10 | 8

REST Bulk: core features
● Flexible target selection:

● List of targets, directories with children, fully recursive
● Separation between request cancellation and request

clearing.
● Flexible auto-clearing of requests
● Request introspection: target selection, progress, errors

so far, original request
● Request discovery:

● see all uncleared bulk requests,
● Filter to show only certain requests (e.g., incomplete).

 dCache: Bulk request API| | 2021-02-10 | 9

REST Bulk: whistle-stop tour
Create a request:

POST request (with JSON object) targeting /api/v1/bulk-requests
If successful, response contains Location header, with ID for that request (a
URL)

Current status:
● GET request targeting <ID>
● Response is JSON-Object

Cancel a request:
● PATCH request (w/ JSON object) targeting <ID>

Clear a request:
● DELETE request targeting <ID>
● Clearing an on-going request also cancels it.

 dCache: Bulk request API| | 2021-02-10 | 10

REST Bulk: current status
● Initial version available with (not yet released) dCache

v7.0
● Supports placing limitations on number of bulk requests:

● May define limits per-user and total.
● Supported activities:

PIN, UNPIN, UPDATE-QOS and DELETE
● Future work: stress testing and feedback from production

use.

 dCache: Bulk request API| | 2021-02-10 | 11

Connection with DOMA-TPC
● Start of a standardisation effort:

● Bulk API considered a starting point for a storage agnostic
tape interface.

● So far, all interested parties seem somewhat agreeable.
● Very early days .. need feedback from other developers.

● Clients would also need to be written
● Perhaps similar to how SRM+GridFTP and SRM+HTTP-TPC work

currently.
● The API is decoupled from the actual data operation:

● FTS could do Bulk-API+GridFTP or Bulk-API+HTTP-TPC or Bulk-
API+xroot-TPC.

 dCache: Bulk request API| | 2021-02-10 | 12

Open issue #1: endpoint discovery
● In dCache, REST API (and so, Bulk API) is a separate

endpoint:
In particular, REST API requests don’t work against the
WebDAV endpoint.

● Should CRIC record two endpoints: REST API + data-
transfer endpoint (e.g., WebDAV)?

● If CRIC store just one endpoint, how is the other endpoint
discovered?

● Both endpoints are the same (break clean separation)
● Add discovery mechanism (WebDAV → REST or vice versa)
● dCache REST already supports WebDAV discovery.

 dCache: Bulk request API| | 2021-02-10 | 13

Open issue #2: writing to tape.
● So far, talking about staging data back from tape.
● What about uploading data so it’s written to tape?
● Several options, including …

● Use Bulk API’s QoS transition, after upload completes.
● Something in the data-transport protocol; e.g., an HTTP

header in PUT request (or something in the URL).
(Would already work with HTTP-TPC.)

● Use path to identity target media.

Thanks for listening

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

