Coupler (FPC & HOM) concepts for compact crab cavities

Wolfgang Weingarten – CERN 2nd revised version including additional information as collected during the workshop

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

15 -17 December 2010 Rev. 7 Feb. 2011

Outline

- Spectrum of LHC beam
- Some basic relations ¹⁾
- Compact crab cavity characteristics
- Coupler/damping, cryogenic and clean work requirements
- Fundamental Power Couplers for Crab Cavities, possible designs²)
- Conclusion

2

1) I owe much of clarification to Joachim Tückmantel: Crab cavities: speed of voltage change, CCinSWG, 27 Nov.2009 (cf. also J. Tückmantel, BE-RF, Cavity-Beam-Transmitter Interaction Formula Collection with Derivation, CERN-ATS-Note-2011-002 TECH, January 24, 2011).

2) The respective slides were provided by Eric Montesinos, whom I gratefully thank.

Spectrum of LHC beam 1/2

from LHC design report CERN-2004-003 15 December 2004

Bunch Disposition in the LHC, SPS and PS

1.8 μs 0.3 μs

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

Some basic relations

	Longitudinal	Transversal	
Energy-momentum 4-vector	$E^2 - p^2 c^2 =$	$= m^2 c^4 \to 0 \Longrightarrow E = \boldsymbol{p} c$	
	$\Delta p_{\rm II} \cdot c = \Delta E_{\rm II} = eV_{\rm II}$	$\Delta p_{\perp} \cdot c = \Delta E_{\perp} = eV_{\perp}$	
Panofsky-Wenzel theorem	$V_{\rm II} = -i \cdot \frac{\omega}{c} \cdot V_{\perp} \cdot x$		
Wave propagation	$Q_{ext}^{opt} = \frac{V_{II}}{2 \cdot (R/Q) \cdot I_{b,DC} \cdot f_b \cdot \sin \Phi}$	$Q_{ext}^{opt} = \frac{V_{\perp}}{2 \cdot (R/Q)_{\perp} \cdot x \cdot I_{b,DC} \cdot f_b \cdot \sin \Phi} \cdot \frac{c}{\omega}$	
	$P_{g} = \frac{1}{2} \cdot \left(\frac{R}{Q}\right) \cdot Q_{ext}^{opt} \cdot \left I_{g,r}\right ^{2}$	$P_{g} = \frac{1}{2} \cdot \left(\frac{R}{Q} \right)_{\perp} \cdot x^{2} \cdot \left(\frac{\omega}{c} \right)^{2} \cdot \frac{Q_{ext}^{opt}}{c} \left I_{g} \right ^{2}$	
	$P_r = 0$	$P_r = 0$	
Legend to symbols	P _r : reflected power P _g : generator power f _b : bunch form factor (close to 1) x : maximum beam offset I _{b,DC} : DC beam current V: kick-voltage E: energy of beam	 <i>Φ</i>: Phase angle <i>ω</i>: RF frequency of "crab" mode (<i>R</i>/<i>Q</i>): long. or transversal R/Q value <i>Q</i>_{ext, opt}: ext. Q-value of "crab" mode that minimizes the reflected power (this is not necessarily the most favourable option!) 	

Compact crab cavity characteristics 1/2

	Compact crab cavity candidates under study				
Cavity characteristics	Parallel bar elliptical TEM cavity (JLAB)	Half wave spoke resonator (SLAC)	Four Rod Compact Crab Cavity (Cockcroft)	Compact crab cavity (KEK)	
Deflecting mode at 400 MHz $R/Q = V^2/(2\omega U)$					
Total kick voltage [MV] per beam	10				
Kick voltage [MV] per cavity	5				
Total number of cavities	16 (4 cavities per beam and interaction point)				
Frequency [MHz]		40	0		
Cavity width/diameter [mm]	295	290	286	150	
Cavity height [mm]	406	391.5	236	668	
Cavity length [mm]	445	580	408	> 668	
Beam pipe Ø [mm]	84	84	84	75	
Peak el. field [MV/m]	36	52	62	145 (n/a)	
Peak mag. field [mT]	80	97.5	99	250 (n/a, > B _c of Nb)	
$R/Q_T[\Omega]$ per cavity	131.3	107.5	475	8	
Surface resistance @2 / 4.5 K $[n\Omega]^{1}$	6/180	8/260	8/260	n/a	
Geometry factor [Ω]	108.9	60 (best guess)	70	78	
Respective Q-values [10 ⁹]	12/0.4	7/0.2	8/0.3	n/a	
Power dissipation [W]	5/160	17/500	3.4/98	n/a	
¹⁾ Derived from a least square fit of a mult	titude of cavity data: W. We	eingarten, On the Field Dependent Surf	ace Resistance Observed in Superc	onducting Niobium Cavities,	
	Proceeding	Proceedings of SRF2009, Berlin, Germany, TUPPO052.			

Compact crab cavity characteristics 2/2

Compact crab cavity candidates under study					
Φ=90°		Parallel bar elliptical TEM cavity (JLAB)	Half wave spoke resonator (SLAC)	Four Rod Compact Crab Cavity (Cockcroft)	Compact crab cavity (KEK)
x < 0.5 mm			RE	1994	
Crab mode at	400 MHz				
$R/Q = V^2/(2\omega L)$	J) ("circuit" definition)		10		
Crab mode	R/Q _τ [Ω] per cavity @ f [MHz]	131.3 @ 400	107.5 @ 400	475 @ 400 MHz	8 @ 400 MHz
	Q _{ex} , opt	6.10^{6}	8.10^{6}	2·10 ⁶	1.10^{8}
	Generator power [kW]	15	15	15	15
Longitudinal mode with	Maximum R/Q [Ω] per cavity @ f [MHz]	~75 @ 680	~90 @ 330	60 @ 375	?
largest R/Q	Max. required Q _{ex} for 10 kW deposited power	200	100	200	?
	Max. required Q _{ex} for 1 MV max voltage build-up	10 ⁴	10 ⁴	104	?
	Max. required worst case Q_{ex} for 40 k Ω per cavity ²⁾	270	220	330	?
Transverse non- crab mode with	Maximum R/Q _T [Ω] per cavity @ f [MHz]	~45 @ 610	~70 @ 880	~40 @ 1050	?
largest R/Q _T	Max. required Q_{ex} for 0.4 M Ω /m per cavity for 2 identical cavities ²⁾	700	310	450	?
⁺'This is n	ot the most prominent but the	e mode closest to the crab m	iode, ~'This number is bas	ed on E. Shaposhnikova's talk at L	HC-CC10, slide # 19

Coupler/damping, cryogenic and clean work requirements 1/2

- The competition among lower-order modes, same-order modes, and higherorder modes is to a large measure the main technical and engineering issue encountered in crab cavities.
- Fundamental power coupler (FPC)
 - must provide about 15 kW RF power with $Q_{ext} = (2 6) \cdot 10^6$ (depending on beam offset)
- HOM/LOM/SOM coupler
 - Must provide $Q_{ext} = 100$ 300 for specific modes without affecting the crab mode.
 - Consequence: cavity with large beam tube to guarantee leaking out of all modes seems to be most adequate but at the cost of an effective filter to block the crab mode (an exception is the JLAB cavity)
- Cryogenic needs
 - The dynamic heat load at 2/4.5 K is in the range of 10/100 and even more Watts.
- Clean work
 - The required electromagnetic fields correspond to an equivalent of 25 31 MV/m in conventional acc. cavities; hence a crab cavity study can largely profit from the planned upgrade in CERN's SM18 treatment and assembling facilities

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

15 -17 December 2010

FPC: on cell waveguide coupler
 LOM/HOM coupler: on cell waveguide coupler, achieved Q_{ex} ~ 100;
 on cell coaxial loop couplers under study, meet requirement Q_{ex} ~ 70
 → promising ongoing design

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

FPC: coaxial, $Q_{ex} \sim 10^5 - 10^6$ **LOM/HOM coupler:** alternative damping schemes: "fluted" beam tube, $Q_{ex} > 150$, or coaxial, $Q_{ex} > 1480$, crab mode is lowest mode \rightarrow promising ongoing design, but RF field too large (beyond the critical field of Nb) for the specific requirements of LHC

Conclusion

13

- The compact crab cavity for the LHC is challenging in obtaining the large electromagnetic fields (31 MV/m equivalent to acc. cavity) an additional argument in favor of the planned refurbishment of the SRF infrastructure in SM18.
- The competition among lower-order modes, same-order modes, and higher-order modes is to a large measure the main technical and engineering issue encountered in crab cavities;

The damping studies for LOM,SOM and HOM must go on.

- The fundamental power is low (tens of kW depending on tolerated beam offset).
- There exist several well advanced and robust designs.

Fundamental Power Couplers for Crab Cavities

- Depending on the cavity design and available space around the cavity, several solutions can be considered
- We recently launched at CERN several Fundamental Power Couplers developments which cover various window types:
 - SPL coaxial disk window coupler
 - SPL/ESRF/SOLEIL/APS coaxial cylindrical window coupler
 - Linac 4 waveguide disk window coupler

f ₀	400 MHz
Average Power	15 kW
$Q_{\rm ext} of$ input coupler	Fixed
Coolant	Air cooled

• Even if designing a new Fundamental Power Coupler will never be an easy job, we can try to design a new coupler to meet the proposed parameters and fit any cavity design

LHC-CC10, 4th LHC Crab Cavities Workshop, 15-17 December 2010, CERN

CERN, BE-RF-SR, Eric Montesinos

Thank you for your attention

Men do not stumble over mountains, but over mole hills - Confucius -

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

15 -17 December 2010

Spare slides

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

15 -17 December 2010

Coaxial Disk windows

Coupler	Frequency [MHz]	Average Power [kW]	Peak power [kW]	# in operation or constructed
SPS	200	550	800	16
KEKB	509	300	1420	8
CEA-HIPPI	704	120	1200	2
IHEP	500	150	270	2
JPARK	972	30	2200	23
SNS	805	78	2000	93
SPL	704	100	1000	Prototyping ongoing

Waveguide windows

Coupler	Frequency [MHz]	Average Power [kW]	Peak power [kW]	# in operation or constructed
SPS	801	225	225 (more ?)	8
Cornell	500	350	350	4
FNAL / TTF II	1300	4.5	1000	32
LBNL	700	800	800	4
Linac 4	352	140	1400	Prototyping ongoing

LHC-CC10, 4th LHC Crab Cavities Workshop, 15-17 December 2010, CERN

CERN, BE-RF-SR, Eric Montesinos

One cylindrical window

Coupler	Frequency [MHz]	Average Power [kW]	Peak power [kW]	# in operation or constructed
LHC	400	550 sw cw, (i.e 2200 tw cw)	i.e. 2200 tw cw	16
LEP	352	550 tw cw	565 tw cw	252
SPS (1976-2000)	200	375	500	16
SPL	704	100	1000	Prototyping ongoing
ESRF / Soleil / APS	352	500	1000	Prototyping ongoing

December 2010, CERN

CERN, BE-RF-SR, Eric Montesinos

Two cylindrical windows

Coupler	Frequency [MHz]	Average Power [kW]	Peak power [kW]	# in operation or constructed
TTF family - XFEL	1300	4.5	1100	16 (+ 1064)
Cornell ERL	1300	75	75	2

Engineering points for Fundamental Power Couplers

- RF power capability
 - Minimize heat load
 - Gas coolant (air preferably) is preferred to liquid coolant to ease beam vacuum leak detection in case of failure
- Ceramic design:
 - The critical item of a power coupler is the main ceramic.
 - The coupler robustness mainly depends on the ceramic design
 - Single ceramic room temperature window couplers have proven to be reliable
 - Brazing and EB welding needed

- Coupler design:
 - Modeling
 - Ceramic location in E-field minimum
 - Prototyping
 - Matching and VSWR
 - Bandwidth
 - Q_{ext} , tuning
 - Multipacting simulation
 - Monitoring (vacuum, e- probe, arc detector)
- Coatings:
 - Plating or/and sputtering
 - Multipacting suppression (Ti, TiN)

CERN, BE-RF-SR, Eric Montesinos

LHC-CC10, 4th LHC Crab Cavities Workshop, 15-17 December 2010, CERN

Engineering points for Fundamental Power Couplers

- Mechanical:
 - Clean room cleaning and assembly to guarantee high field
 - High pressure rinsing
 - Contamination during beam vacuum part assembly
 - Easy installation
 - Integration with the cryomodule
- Easy operation
 - Maintenance (air blowers, water pumps)
 - Failure consequences
 - Repair
 - Spares

- RF Conditioning
 - Vacuum bakeout
 - High vacuum pumping for shorter processes
 - Short pulses up to full power, with pulse length increased to cw with vacuum feedback conditioning method
 - DC biasing
 - Temperature sensors
 - Room temperature testing
 - High power tests benches available from the beginning

• Cost

LHC-CC10, 4th LHC Crab Cavities Workshop, 15-17 December 2010, CERN

Long tradition at CERN

NUCLEAR INSTRUMENTS AND METHODS 164 (1979) 3I-55; © NORTH-HOLLAND PUBLISHING CO.

a)

THE KARLSRUHE - CERN SUPERCONDUCTING RF SEPARATOR

A. CITRON, G. DAMMERTZ, M. GRUNDNER, L. HUSSON, R. LEHM

Kernforschungszentrum Karlsruhe, Institut für Kernphysik, 7500 Karlsruhe, Postfach 3640, Germany

and

H. LENGELER

CERN, Geneva, Switzerland

Received 26 February 1979

22

19 cells

22

