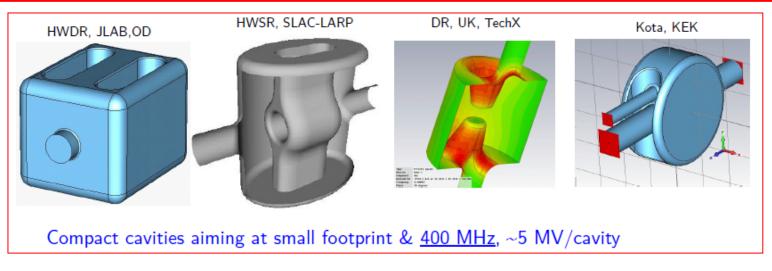


Summary of Sessions on Cavity Technology and Cryomodule and Integration

E. Ciapala

- ICFA Deflecting Cavity Workshop (Alireza Nassiri)
- EuCARD Cavity Developments (Graeme Burt)
- LARP Cavity Developments (Zenghai Li)
- ODU/JLAB Cavity Developments (Jean Delayen)
- KEK Cavity Developments (Kenji Hosoyama)
- Quarter wave resonator as a Crab Cavity (Ilan Ben-ZVI)
- Slim Elliptical Cavity (Luca Ficcadenti)
- Coupler Concepts for Compact Cavities (Wolfgang Weingarten)
- Thermal & Mechanical analysis for CCs (Vittorio Parma)
- Tuner Concepts for Crab Cavities (Alireza Nassiri)


= > Progress on moving towards realizing CCs, ancilliaries and their cryostat.

Proposed Strategy for Crab Cavities CC09

3

Main Goal : Compact Crab Cavities for LHC Local Scheme

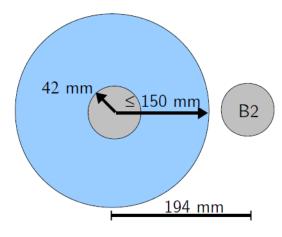
CC09 workshop recommendation:

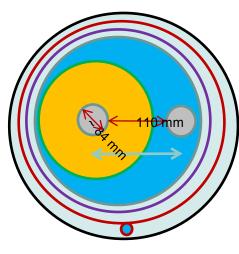
! Future R&D focus should be on compact cavities which are suitable for both schemes.

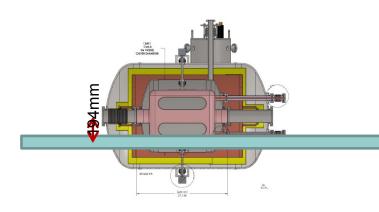
- Complete conceptual designs of the main candidates
- Down-select to at least two designs, with full spec. and mechanical drawings of the cavities. Conceptual designs for tuner and He tank, the SOM, HOM and LOM coupler and the cryostat
- Hardware prototyping and test on above, tooling, construction of prototype bare cavities prototypes, surface treatments and tests to confirm gradient and performance

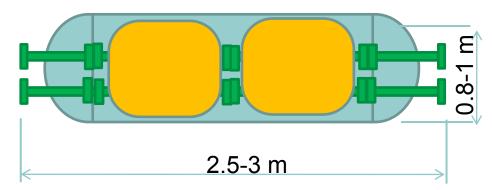
Overall schedule of the crab cavity project synchronized with the expected LHC operation schedule and the HL-LHC project proposal.

	201	LO	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
LHC operation				Splice Conso	lid.		Co	ollim. , prep C	C			IT upgrade	, CC
EuCARD													*
DS HL-LHC					PDR	Т	DR						
					*		*						
Project Document					•				1				
Compact Crab Cavity													
Validation													
Milestone		Com	pact Cavity 1	echnol									
Technical Design													
Milestone	Dec	ision	on impleme	entation									
Construction								-					
Operation													
Elliptical Crab Cavity													
Technical Design													
Construction							*						
Milestone	Deci	sion o	on implemer	ntation: Glob	al scheme w	ith Elliptical	СС						
Operation													
Infrastructure LHC													
Planning													
Prepare IR4													
Prepare IR1 & IR5													
Infrastructure SPS													
Planning													
Preparation (Coldex)													
Beam test Elliptical													
Beam test Compact													
KEK-B CC test in SPS													
Prepare Coldex for KE	квсс												
Milestone			Decision on I	KEKB-CC test	in SPS								
Beam test		***											




- Couplers see later
- Tuners Basic concepts reviewed, not ready to specify design...
- Cryostat layout (V. Parma)LHC...

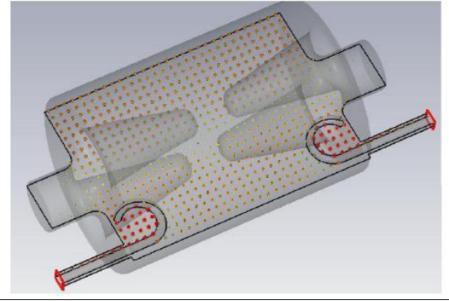

LHC IR 1,5 constraints

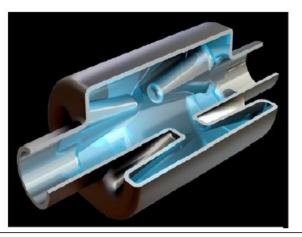


Baseline for Local CC: Second beam INSIDE the He tank!

Global as LHC...

Typical envelope (2 cavity one cryo-module), strongly depends on choice of cavity

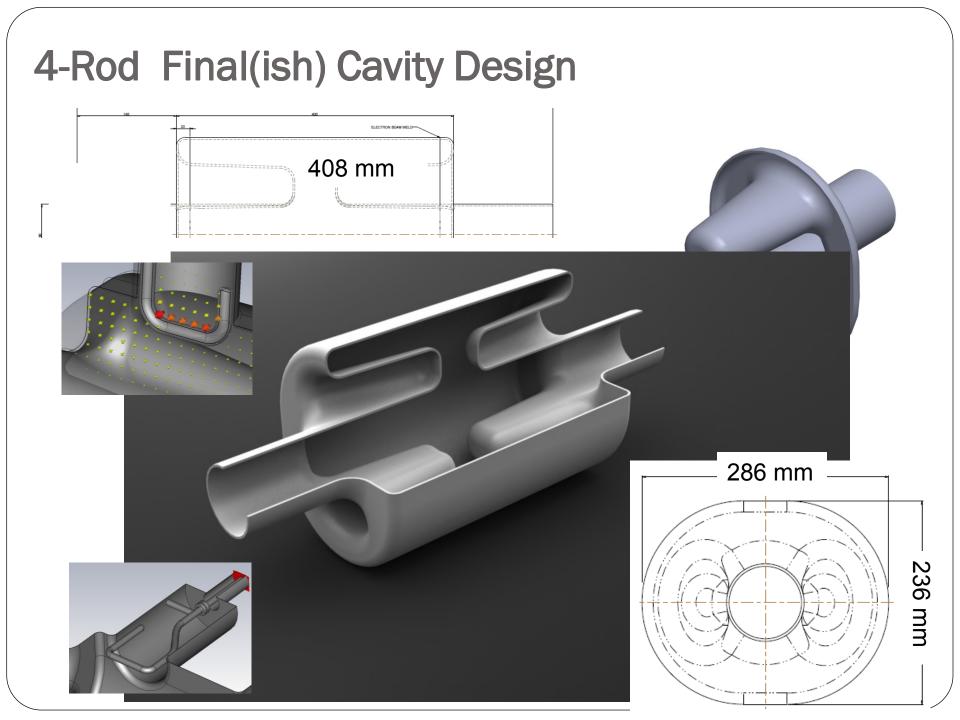


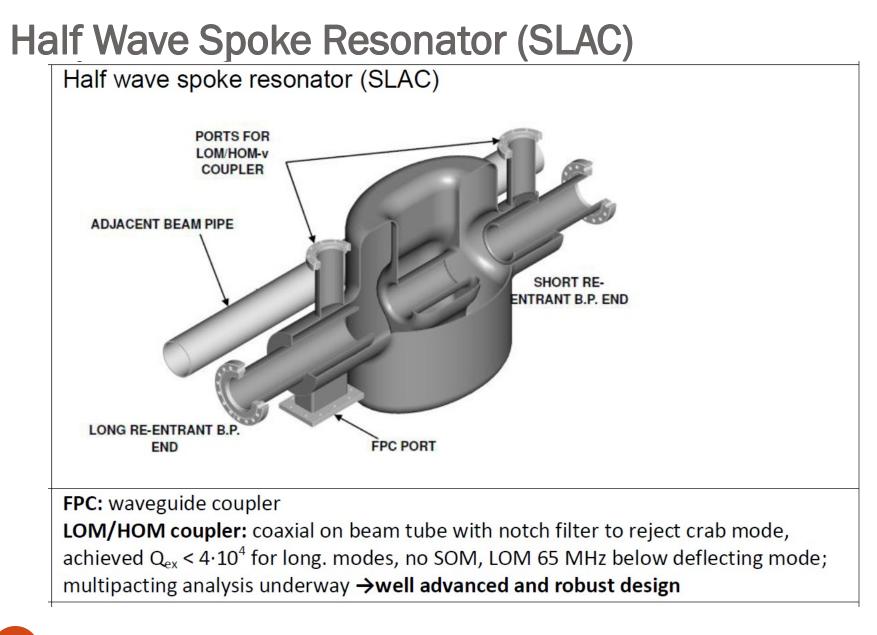


Cavities and Technology

Four Rod CC (Cockroft)

Four Rod Compact Crab Cavity (Cockcroft)

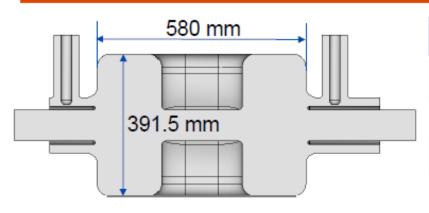


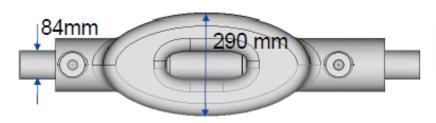


FPC: on cell waveguide coupler
LOM/HOM coupler: on cell waveguide coupler, achieved Q_{ex} ~ 100;
on cell coaxial loop couplers under study, meet requirement Q_{ex} ~ 70
→ promising ongoing design

LHC-CC10, 4th LHC Crab Cavity Workshop CERN Geneva - W. Weingarten

15 - 17 December 2010





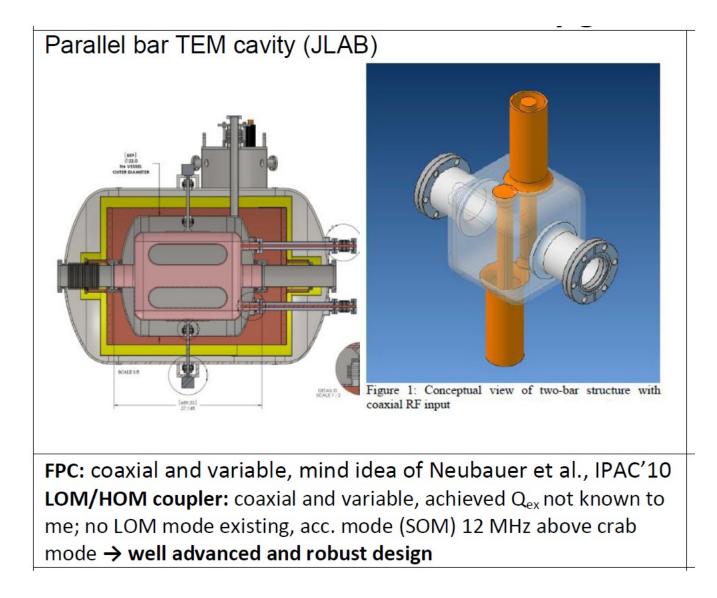
10

15 - 17 December 2010

400 MHz HWSR Cavity Parameters

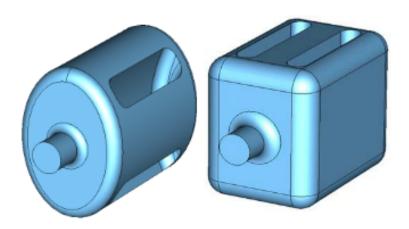
RF parameters calculated with all damping features included

Parameters					
Cavity Width (mm)	290				
Cavity Height (mm)	391.5				
Cavity Length (mm)	580				
Beam pipe radius (mm)	42				
(R/Q) _T (ohm/cavity)	215				
$E_S/V_T ((MV/m)/MV)$	10.4				
B_S/V_T (mT/MV)	19.5				


- 10 MV deflecting voltage required
- 2 cavities/beam, 5 MV each

TESLA TDR cavity peak fields for comparison Eacc: 35 MV/m: Epeak: 66 MV/m; Bpeak: 140mT

Parallel Bar TEM Cavity (UDU/JLAB)

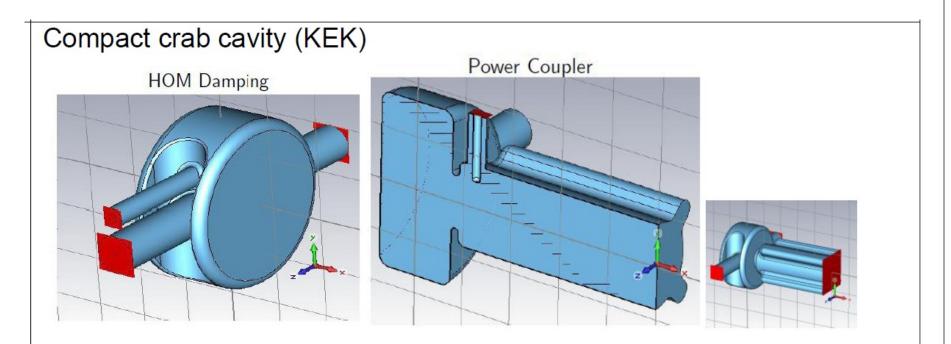


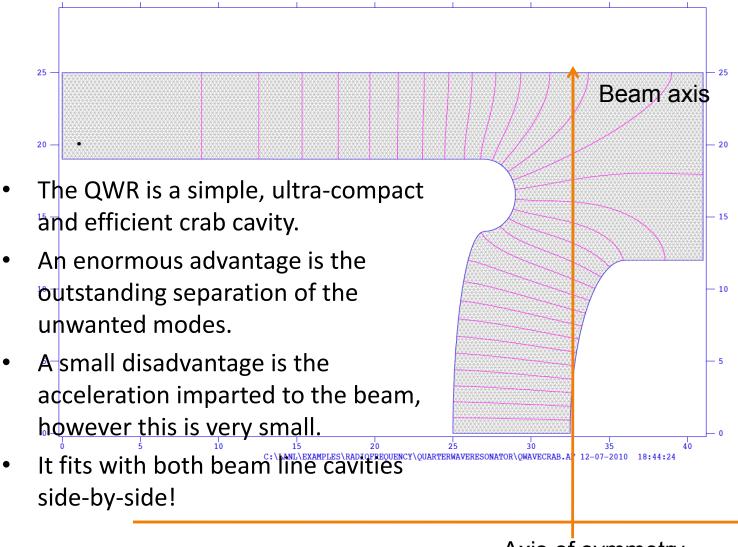
12

15 - 17 December 2010

Cavity Properties – Elliptical Design

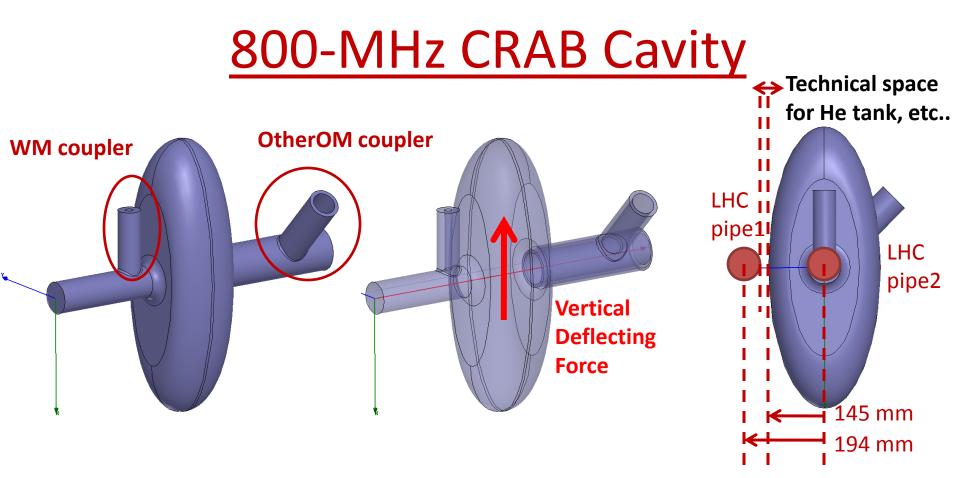
Parameter	Rectangular Shaped	Elliptical Shaped	Unit	
Frequency of m mode	400.0	400.1	MHz	
λ/2 of π mode	374.7	374.7	mm	
Frequency of 0 mode	411.0	677.1	MHz	
Nearest mode to m mode	411.0	609.2	MHz	
Cavity reference length	444.7	445.0	mm	
Cavity width / diameter	300.0	295.0	mm	
Cavity height	383.2	406.0	mm	
Bars length	330.0	330.0	mm	
Bars width	55.0	60.0	mm	
Aperture diameter	84.0	84.0	mm	
Deflecting voltage (V_T^*)	0.375	0.375	MV	
Peak electric field (E_P^*)	2.2	2.7	MV/m	
Peak magnetic field (B_P^*)	7.9	6.03	mT	
B_{p}^{*}/E_{p}^{*}	3.6	2.23	mT / (MV/m)	
Geometrical factor ($G = QR_S$)	74.1	108.9	Ω	
[R/Q] ₇	413.34	262.63	Ω	
R _T R _S	3.1×104	2.7×104	Ω^2	
At $E_{\tau}^* = 1 \text{ MV/m}$				


- Surface magnetic fields have improved by 24%
- Frequency separation of the first two modes ~ 209 MHz compared to 11 MHz in the rectangular design
- Reduced cavity width to meet the LHC crab cavity specifications


Kota Compact Crab cavity (KEK)

FPC: coaxial, $Q_{ex} \sim 10^5 - 10^6$

LOM/HOM coupler: alternative damping schemes: "fluted" beam tube, $Q_{ex} > 150$, or coaxial, $Q_{ex} > 1480$, crab mode is lowest mode \rightarrow promising ongoing design, but RF field too large (unless I made a mistake)


Quarter Wave Resonator as a Crab Cavity

- Cavity design fits both GLOBAL and LOCAL schemes
- Surface field and RF parameters optimized
- Other Order Mode Coupler to be optimized
- Working Mode Coupler optimized
- Preliminary Multipacting analysis performed

- Status of design & developments
- Detailed cavity coupler design, deflecting mode characteristics
- HOM spectra and achievable damping
- Coupler configurations
- Mechanical tolerances
- Multipactor
- Tuning concepts
- Cavity fabrication, treatment,
- Assembly of couplers
- He vessel, Ancilliary equipment
- Non linearity of deflecting voltage with transverse displacement

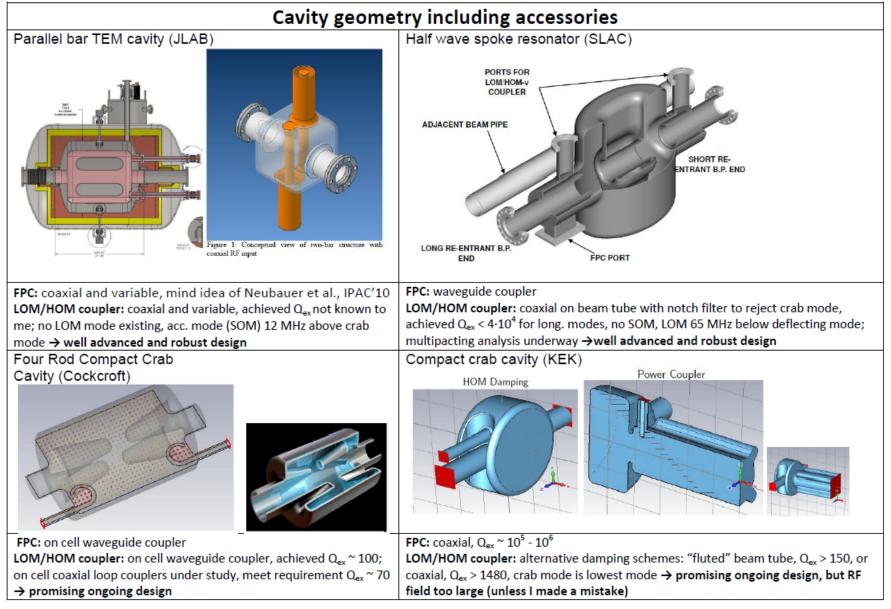
Have reached the stage where there is no fundamental show stopper for embarking on first hardware prototypes

- Three CC design presented, they have reached initial design specifications
- Good progress made since CC09.
- Engineering designs advanced or complete
- For all, plans exist on how to to reach HL-LHC Milestone 1 of bare cavity test and validation
- We are ready for prototyping
- The designs of cryomodules and ancilliaries will continue in order to be finalized for Milestone 1

Open Issues:

- Precise impedance budget for beam stability with current of baseline of 8 cavities/beam
- Dynamic failures (multipacting and fast quenches) to be experimentally verified
- Should we aim for early construction of a full prototype CC for a test in the SPS ?

Thanks to all the speakers in these two sessions



Comparison								
-								
	Saclay	Saclay II	INFN BT	KEK SJT	KEK Coax			
Coarse Range	\pm 220 kHz	\pm 250 kHz	\pm 250 kHz	\pm 500 kHz	\pm 1000 kHz			
Coarse Res.	<1 Hz	<1 Hz	<1 Hz	<1 Hz	<1 Hz			
Tuning Stiffness	17 N/μm	30 N/μm	13 N/μm	80 N/μm	60 N/μm			
Fast Actuator	Piezo	Piezo	Piezo/Magnetost.	Piezo	Piezo			
No. of FA	2	2	2	1	1			
FA environment	5K/Vac	5K/Vac	5K/Vac	Warm	80K/Vac			
Motor environment	5K/Vac	5K/Vac	5K/Vac	Warm	80K/Vac			

A. Nassiri Tuner Concepts for Compact Cavities LHC-CC10, December 2010, CERN

CC10 - Summary Cavity Technology and Cryomodule