-Injection Complex 2010 Layout

Civil engineering

for the Main Beam Injector complex

Base Line configuration

Not to scale

Damping rings still to be finalised

CLIC main injectors layout

Assuming 2 GHz linacs, 15 MV/m loaded, 0.85 filling factor

e ⁻ Source + 200 MeV linac:	50 m
2.66 GeV pre linac for e ⁻ and e ⁺ :	250 m
6.14 GeV booster linac for e ⁻ and e ⁺ :	500 m
5 GeV drive linac for e ⁺ :	400 m
Positron target + 200 MeV capture linac:	100 m
BC1:	70 m
Spin rotator:	135 m
Diagnostics upstream BC1:	100 m
Diagnostics downstream BC1:	100 m

possible layout keeping proposed DR layout

possible layout DR with PDR inside

Questions and proposal

- Propose to put booster and positron driver in the same tunnel
- Is a 180 deg arc at 200 MeV a problem for positrons ?
- Function of the transfer lines between rings ?
- Is there a optimal layout for the ring positions ?
- Is 300 m enough for spin rotator, diag, BC1 and diag?
- Can we use the long transfer lines down to the tunnel for diagnostics, spin rotation ?
- Spin rotation before damping ring, needed ?, where?, how long ?