ATLAS Release Tester (ART)

Tulay Cuhadar Donszelmann (UCI)

IRIS-HEP topical meetings on US-ATLAS and US-CMS
March 29th, 2021

ATLAS

EXPERIMENT

Introduction

® ATLAS Offline Software Release
— Lives in one large git repository
— One branch for each release-series (TierO-production, simulation,

development)
— Code-base is sub-divided into “packages” (feature of our build system)

— Projects can be defined as subset of “packages”
e Example: Event Generation releases use only a subset of packages

® Nightly Builds

— HEAD of each branch

— Tagged for each nightly by timestamp

— Multiple platforms and multiple projects
® Nightly Tests

— Run for each of the nightly builds

— Short Tests (executed locally)

— Long Tests (executed on Grid)

Previous Nightly Testing System

® Run Time Tester (RTT) framework has been used in ATLAS for a long
time
— The system was bound to specific clusters at CERN
— Depended on AFS
— Running a single test was not straightforward, because all tests were
defined in a single XML file

A new framework for the ATLAS testing system was needed to address
these issues

What is ART ?

® ATLAS Release Tester (ART) provides a unified testing system
— One tool (art command line)
— One set of tests (for grid or local)
® |t allows to submit:
— Long tests to the GRID
— Short tests on local machines, to be run in parallel
® |tis used by:
— Automatic Nightly Submission
o After the nightly release is built
* Using the gitlab-ci system to manage the submission
— Users

® To run jobs locally or on the GRID

Features of ART

® Simple Test Definition
— Shell or Python tests
— Adorned with headers to instruct ART
— Full control by developers
— Easy to run and reproduce any failure
— Easy to submit job to GRID

® Predefined set of possible input files (bytestream, simulation, ...)
— Either on CVMFS or on GRID (rucio)

® Possibility to run post processing
— Regression tests
— Histogram comparison

® Automatic download and storage of results

® Automatic clean up the EOS

ART Command Line Ultilities

® User defines test and adds art-headers in the form of key-value pairs:

test_example.sh(.py)

art-type: grid # art-type : grid | local (To run on grid or locally)

art-input: .. # art-include: <String> (Nightlies the script must run on)
art-input: <String> (Name of the dataset to be read in the grid)
art-nfiles: <Int> (Number of files to be read from the dataset)

<actual test lines go here>

® User run jobs in parallel locally or submits jobs to GRID using ART

art.py run [options] <script_directory> <sequence_tag> [<test_names>..]
art.py grid [options] <script_directory> <sequence_tag>

waits for grid result to be ready to copy to EOS using ART:

art.py copy <indexed_package>

e Some ART Command line utilities (CLU):

ART — ATLAS Release Tester.
Usage:

art.py run [-v —q ——type=<T> —--max-jobs=<N> —--ci —-run-all-tests —--timeout=<S> —-copy=<dir>]
<script_directory> <sequence_tag> [<test_names>...]

art.py grid [-v —q ——type=<T> —--max-jobs=<N> -n —-run-all-tests —--no-build=<nightly_tag>] <script_directory>
<sequence_tag>

art.py submit [-v —q ——type=<T> —--max-jobs=<N> —--config=<file> -n —-run-all-tests —-no-build=<nightly_tag> —-
no—copy] <sequence_tag> [<packages>...]

art.py copy [-v —q ——user=<user> —-dst=<dir> —-unpack —--tmp=<dir> --seq=<N> —-keep-tmp] <indexed_package>

art.py validate [-v —q] [<script_directory>]

art.py included [-v —q ——type=<T> —-test-type=<TT> ——out=<file>] [<script_directory> [<packages>...]] 6

ART Implementation

® Simple class hierarchy to handle local and grid jobs ArtBase

— Fully written in python
® Helper classes to abstract different functionality for / \

things such as configuration, headers, Rucio: ArtBUild

— ArtConfiguration, ArtHeader, ArtRucio
® Some scripts to handle different functionality:

— art.py (main script), art-trigger.py (sending trigger to git-lab-ci), art-
Share.py (input management)

® ART is on gitlab https://gitlab.cern.ch/art in four projects:

art-sw: ART software project, Classes and command-line tool

art-submit: ART grid submission project, receiving the trigger and
submitting the jobs

art-gitlab-ci-runner: Runner images (slc6, cc7, grid and local) for ART

art-www: ART project web site and asciidoc manual

https://gitlab.cern.ch/art

Automatic Nightly Submission

® Nightly Build triggers the ART gitlab-ci system, which runs through 4 stages:
checkout: Checks out a proper copy of ART
configure: Verifies if testing is required
cvmfs: Verifies the availability of the nightly release on CVMFS (which is
distributed to the GRID)
submit: Submits jobs to grid (ART CLU) and waits for results to be copied

® The 4 stages above run on a set of 5 Virtual Machines for ART, each loaded with

docker images to run the ART command line and submit jobs to the grid or to the two
machines dedicated for ART local jobs.

® Jobs can be consulted using a Web Interface looking at either gitlab or GRID output.

ART
Docker / Image

GITLAB-CI

Runner

OpenStack VM

GITLAB

Cl

art-submit Pipeline

art » art-submit > Pipelines

All 1,000+ Pending 0 Running 9 Finished 1000+ Branches Tags Clear Runner Caches Cl Lint
Status Pipeline Triggerer Commit Stages

@ @& mesmanm Q000 > - B
. T sy by OO 3 hours ag0 @ -
@ L et QOO o onass e
B L e OO _ o orasas >
m ¢ eewmam Q000 > -
@ L e QOO o s ® -

Each job corresponds to submission for a nightly

ART’s own Continuous Integration (Cl)

® Unit and Integration Tests for ART try to cover all its code, runs in gitlab-ci in three
phases at every commit.

Checks: ATLAS setup, python-flake8, shell check (30 seconds)

Unittests: For each of the classes/modules (2 min)

Atlastests: Local tests to setup and download files (10 min)

Gridtests: Run when repo is tagged: submit simple job and check results (30 min)
® Coverage: gather all coverage information of unittests and grid-tests and publish

> Coverage of the code is around 90%

Pipeline Needs Jobs 29 Tests 0
Checks Unittest Gridtest Atlastest Report
@ config [} @ art-base [} @ art-submit [} @ art-diff [} @ report_py?2 [}
@ python-flake8 (L3 @ art-base-py2 (3 @ art-submit-py2 | @ art-diff-py2 [}
@ shellcheck (9] @ art-configurat... [£ @ art-local (9]
@ art-configurat... @ art-local-py2 (3
@ art-grid [} @ art-rucio [}
@ art-grid-py2 e} @ art-rucio-py2 |
@ t-head e @ art-script e
@ t-header-py2 | & @ t-script-py2 (&
@ art-misc [} @ art-xrdcp c
@ art-misc- py2 (O @ art-xrdcp-py2 |
@ art-trigger e
@ art-trigger-py2 (&
@ tar e}

10

Checking the ART grid jobs

https://bigpanda.cern.ch/art/

BigPanDAmon team (Contact: tatiana.korchuganova@cern.ch)

ATLAS PanDA Dash- Tasks- Jobs- Errors- Users- Sites- Harvester- My BigPanDA Job by ID 0 Prodsys- Services~ Help

Select menu

Select package

[JJ AthenaMonitoring

[C) DerivationFramework®ART

[[] DerivationFrameworkAnalysisTests
[J DerivationFrameworkBPhysART
[DerivationFrameworkEgammaART
[J DerivationFrameworkExoticsART
[C] DerivationFrameworkFlavourTagART
[DerivationFrameworkHDBSART

[DerivationFrameworkHIART

[[) DerivationFrameworkHiggsART

[DerivationFrameworkInDetART

() DerivationFrameworkJetEtMissART
[0 DerivationFrameworkMCTruthART
[J DerivationFrameworkMuonsART
[DerivationFrameworkPhysicsValidationART
[J DerivationFrameworkSMART

[0 DerivationFrameworkSUSYART

[J DerivationFrameworkTauART

[J DerivationFrameworkTileCalART
[J) DerivationFrameworkTopART

[JJ DerivationFrameworkTrainsART

[DigitizationTests

[DigitizationTestsMT

[DirectiOART

[egammaValidation
FastChainPileup

[G4AtlasAlg

[J InDetPerformanceRTT

aipanda207 | 08:46:23,Refres|

Select branch Select nightly tag Choose View Search
master/Athena/x86_64-centos7-gcc8-opt [0 2021-03-26 @® Overview Show
[master/Athena/x86_64-centos7-clang10-opt [J 2021-03-25 O Task bl
[master/AthSimulation/x86_64-centos7-gcc8-opt () 2021-03-24 O Job

[JJ master/AthGeneration/x86_64-centos7-gcc8-opt [0 2021-03-23

[master--dev4LCG/Athena/x86_64-centos7-gcc8-opt [2021-03-22

[J master--dev4 CG/Athena/x86_64-centos7-gcc10-opt Last nightlies:

[[] master--NinjaTest/Athena/x86_64-centos7-gcc8-opt 7

[master--HepMC3/Athena/x86_64-centos7-gcc8-opt
From x
[J 21.9/Athena/x86_64-centos7-gcc62-opt
[21.6/AthGeneration/x86_64-centos7-gcc62-opt — *
[}
21.3/Athena/x86_64-centos7-gcc62-opt
21.2/AthDerivation/x86_64-centos7-gcc62-opt

21.2/AthAnalysis/x86_64-centos7-gcc8-opt

21.0/Athena/x86_64-centos7-gcc62-opt

a

O

[J 21.2/AnalysisBase/x86_64-centos7-gcc8-opt
O

[JJ 21.0/AthSimulation/x86_64-centos7-gcc62-opt
O

21.0-mc16d/Athena/x86_64-centos7-gcc62-opt

ATLAS PanDA Dash- Tasks- Jobs- Errors~ sers~ Sites~ Harvester- My BigPanDA Job by ID Prodsys- Services- Help~ & ART~

ART nightly tasks aipanda206 | 08:58:54,Refresh

A Back to main page 4= Syiitch to branches view

Package: FastChainPileup
Branch: master/Athena/x86_64-centos7-gcc8-opt,21.3/Athena/x86_64-centos7-gcc62-opt
Listed tests are for builds done from 19 mar 2021 to 25 mar 2021

FastChainPileup

19 Mar 2021 20 Mar 2021 21 Mar 2021 22 Mar 2021 23 Mar 2021 24 Mar 2021 25 Mar 2021

21.3/Athena/x86_64-centos7-gccb2-opt _ 0 -Tz1se -— = = _ 0 -1-2157 - -
master/Athena/x86_64-centos7-gce8-opt Jola" 10 FliT2101 Jola" 10 FliT2101 oo 10 FliT2101 foien 1 faNT2101 Jolo" 10 FAliT2101 Jola" 10 FliT2101 i o faNr2101

ART GRID jobs help

The color coding of test result is the following:

[NAGHVENN - PanDA job still running.

Succeeded - PanDA job finished, sub-steps results are not loaded yet;

[Sliceeeded | - Athena and sub-steps succeeded;

Finished - Athena succeeded, sub-steps failed;

SIS - Athena failed or PanDA job failed;

11

https://bigpanda.cern.ch/art/
mailto:tatiana.korchuganova@cern.ch

Checking the ART grid jobs

ATLAS PanDA

ART nightly tests

M Back to main page 4= S\itch to branches view

Package: FastChainPileup
Branch: 21.3/Athena/x86_64-centos7-gcc62-opt

y BigPanDA

Listed tests are for builds done from 23 mar 2021 to 23 mar 2021

Nightly tag is 2021-03-23T2157
Gitlab ID: 2429297

FastChainPileup

Job by ID

Services -

0o Prodsys -

aipanda208 | 09:03:44,Refresh

Ll Show job consumption plots

Show output container

test_FastChain_fatras_mc16a_ttbar.sh

test_fastchain_g4ms_mc16a_ttbar.sh

test_FastChain_mc16a_ttbar.sh

test_FastChain_MCOverlayMC16_ttbar.sh

test_stdReco_fastSim_fullDigi.sh

test_stdReco_fullSim_fullDigi.sh

test_ttFC_fastSim_fastDigi.sh

test_ttFC_fastSim_fullDigi.sh

test_ttFC_fullHS_fastPU_simDigi.sh

test_ttFC_fullSim_fullDigi.sh

test_ttFC_reco_newTracking_PseudoT_fastSim_fastDigi.sh

23 Mar 2021

mE T2157 25 2/2 €0

1|2 succeeded | T2157 27 22 ¢0
112/ [succeeded 12157 26 22 €0
|'Succeeded 12157 24 2/2 &0
11/2//3)/4 5[succeeded 12157 28 2/2 #0
1//2//3/4)5 ['succeeded ||T2157 29 2/2 #0
11/2//8)[succeeded 12157 30 22 €0
111123 succeeded 12157 31 22 €0
1/2//3[succeeded | T2157 32 22 #0
11123 'succeeded 12157 33 2/2 S0 wh
1]/2//3/4)5)'succeeded [|T2157 37 2/2 # DO

Computing site

ANALY_BNL_INTEL

ANALY_BNL_INTEL

ANALY_BNL_INTEL

ANALY_BNL_INTEL

ANALY_BNL_INTEL

ANALY _BNL_INTEL

ANALY_BNL_INTEL

ANALY _BNL_INTEL

ANALY_BNL_INTEL

ANALY_BNL_INTEL

ANALY_BNL_INTEL

Duration,
h:m:s

0:40:21

0:52:29

0:49:38

0:35:40

1:13:44

1:25:41

0:54:33

0:57:28

1:15:36

1:08:38

1:35:48

CPU
time,

2255

2085

2328

1601

3547

3965

2158

2514

3586

2867

3949

MaxRSS,
MB

5074.3

5498.4

5463.5

2662.2

3240.7

3314.7

3055.9

3234.7

3391.3

3325.0

3046.0

CPU type

s+Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz 36608 KE

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz 25344 KE

s+intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

s+Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 35840 K

A AAAA

nightlies build time

last attempt out of max attempts number

link to logs for last attempt

link to ART EOS copy area

link to HTML with histograms

12

Histogram comparison

1000

500

2021-03-25 15:50:14

Reference files are distributed on the grid

13

Used Technologies

docopt.py: To handle the command-line and its options
yaml and json: For configuration and status files
gitlab-ci: To submit nightly tests and wait for their results

open stack Virtual Machines (VM): To run all the gitlab-ci jobs on
(installed/registered centrally via puppet)

docker and docker-images: To have the same environment on all the
VMs

BigPANDA: For GRID job submission and monitoring
Rucio: To download results into the VMs
EOS and xrdcp: To copy results back from the VMs into EOS
asciidoc and asciidocter:
— To write the ART Manual

— To convert the asciidoc manual to pdf and a website

14

Summary

® ART is a framework to test the ATLAS offline software

® ART is fully in production and replaced a system that was bound to
legacy infrastructure

® ART continues to evolve depending on the needs of ATLAS and on
the evolution of the underlying infrastructure

15

