

Analysis of $ee ightarrow t ar{t}$ and first jet studies

Julie Munch Torndal

Supervisor: Jørgen Beck Hansen

Niels Bohr Institute

February 15, 2021

Keywords of the project

The focus of this project is analysing **top-quark electroweak couplings** in pair produced events. An **optimal observables analysis** is planned to be performed in order to gauge the sensitivity to **anomalous couplings of the top quark to the photon and the Z**. MC data is simulated using FCCSW where an **event selection and event reconstruction** is being developed with plans of performing a **kinematic fit**.

Optimal Observables (00)

For a single coupling parameter C which is zero at Born level in SM

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\bigg|_{SM} = 1 + \frac{OO_{C}^{(1)}}{SM} \cdot C + \frac{OO_{C}^{(2)}}{SM} \cdot C^{2} \Rightarrow$$
$$\langle \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \rangle = \langle SM \rangle + \langle OO^{(1)_{C}} \rangle \cdot C + \langle OO_{C}^{(2)} \rangle \cdot C^{2}$$

- same statistical sensitivity as a maximum likelihood fit

- requires matrix elements from MadGraph \leftrightarrow Feynrules \leftrightarrow SMEFT
 - \hookrightarrow functional next comparison to Whizard

Signal:

Semileptonic channel

$$tar{t}
ightarrow bar{b}W^+W^-
ightarrow bar{b}qar{q}\ell v_\ell$$

3rd phase of FCC-ee @ $\sqrt{s} = 365 GeV$

Backgrounds:

- All MC files are generated in the FCCSW framework with DelphesPythia8_EDM4HEP and ILD Delphes Card
 - Common baseline detector decision?

Signature

$$tar{t}
ightarrow bar{b} W^+ W^-
ightarrow bar{b} qar{q} \ell v_\ell$$

Signature of semileptonic decay channel:

- At least 1 lepton
- Missing momentum
- 4 jets
- Invariant mass of lepton-neutrino pair $\sim M_W$
- Invariant mass of entire event
- Event shape: thrust, sphericity
- etc.

Event shapes: Thrust and sphericity are used for quantifying event shape by tracking quark directions. With a non-isotropic event shape, we can expect 1 jet+lepton+ \mathcal{E} on one side of the semi-major axis and 3 jets on the other side.

Highest energy lepton:

Assuming that the lepton from the W-decay will have the highest energy, it can be used as a selector. This selector has an acceptance of

96.6±0.7 %

- \rightarrow Find RP highest energy lepton
- \rightarrow Match to MC particle
- \rightarrow Parent history (EDM4Hep gives parent and daughter history for MCParticleData)
- \rightarrow Stopping criteria with PDG and status code

The majority of the highest energy leptons are originating from a W-boson with the same charge. 0.02% are originating from an opposite charge W-boson indicating a decay from a lighter-flavour non-b-quark. The remaining leptons are originating from a b-quark.

Strategy:

Iterative procedure based on maximum significance on a set of variables

- \rightarrow choose variable with highest maximum significance
- \rightarrow make cut and reiterate on remaining set

List of variables:

- Highest energy lepton
- 2nd highest energy lepton
- Lepton momentum
- Lepton momentum excluding highest energy lepton
- Momentum difference between highest and second highest energy lepton
- Missing momentum
- Invariant mass of lepton-neutrino pair
- Invariant mass of 1st and 2nd highest energy leptons
- Invariant mass of event excluding highest energy lepton
- Thrust of event excluding highest energy lepton
- Thrust of entire event

Significance-optimised selection cut strategy

Upper cut on Highest Energy Lepton

P cross C c

Highest Energy Lepton

Pre-selection cuts

- Exclude events with zero leptons
- Thrust for entire event < 0.85
- 15 GeV <Highest energy lepton < 100 GeV
- $\bullet~160~{\rm GeV} <$ Invariant mass of event excluding highest energy lepton $< 300~{\rm GeV}$
- 2nd highest energy lepton < 40 GeV
- Jet specific cuts to be determined

Significance of signal for each background before and after Pre-Selection

Background	Sanity check	Pre-Selection
Total	48	192
$\mu\mu$	162	402
$\sum q ar q$	169	400
ЬБ	198	400
γZ	152	399
WW	61	326
ZZ	234	392
ZWW	405	400
ZZZ	421	405
single top	157	211

Jet reconstruction:

• FastJet in FCCAnalyses analyzers/dataframe/JetClustering { .cc

Thank you to Clement Helsens for providing this option

- So far, only "native"¹ FastJet algorithms are implemented.
 - k_t, anti-k_t, Cambridge, Durham (e⁺e⁻ k_t) as well as e⁺e⁻ versions of anti-k_t and Cambridge
- The "after burner" provides more flexibility.
- \bullet At least 1 lepton \rightarrow Highest energy lepton is excluded from the clustering
- 4 jets \rightarrow exclusive clustering up to *exactly* 4 jets

Jet matching:

From the 4 hard process quarks in the MC collection, a jet is matched to the MC quark that minimises the matching angle - smallest displacement

¹FastJet User Manual: https://arxiv.org/pdf/1111.6097.pdf

Jet Absolute Energy Difference

between true MC quark and reconstructed jet

k_t Algorithm

Profile plot for absolute energy difference

Profile plot for absolute energy difference

 e^+e^- Anti- k_t Algorithm

Profile plot for absolute energy difference

k_t Algorithm

Energy resolution of jets

 e^+e^- Anti- k_t Algorithm

e⁺e⁻ Cambridge

Energy resolution of jets

Jet Matching Angle between true MC quark and reconstructed jet

k_t Algorithm

Cosine to the Matching Angle for jets

e^+e^- Anti- k_t Algorithm

Cosine to the Matching Angle for jets

Jet Matching Angle between true MC quark and reconstructed jet

k_t Algorithm

e^+e^- Anti- k_t Algorithm

Next steps

Continuing Jet Studies

- Expand list of jet algorithms with "plugin" algorithms from FastJet.
 - Jade, (*e*⁺*e*⁻ Cambridge)
- Energy normalisation methods provided by FastJet
- Merging schemes (default is E-scheme)
- Additional ideas?
- Jet Specific Selection Cuts
 - Thrust to test distribution of jets in event shape, invariant mass, etc.

Kinematic Fit

- Imposing constraints to improve resolution and reduce background for event selection and reconstruction of ttbar events
- \bullet Semileptonic \rightarrow maximum kinematic information
- Complete reconstruction
 - Develop software inspired by ABC-fit compatible with FCCSW

Backup

Thrust of entire event

1200 100

Invariant mass of the rest

Lower cut on Invariant mass of the rest

Upper cut on Invariant mass of the rest

Invariant mass of the rest

2nd highest energy lepton

Upper cut on 2nd Highest Energy Lepton

2nd Highest Energy Lepton

