Three Particle Elastic Scattering Experiment Toward new era of colliding experiment 2021/1 PNU Workshop, 2021.02.25, MINJAE ISAAC KWON

2021/1 PNU Workshop | Tri-Particle Scattering Experiment | 2021.02.25 | MINJAE ISAAC KWON

3 Particle Collision

- MORE DENS/TY: Trillision Experiment (3-body colliding)
- 2 particles and 1 target should be needed.
- ALITE is designed at run5-6 of ALICE. **ALI**ce Target Experiement
- Firstly, 3 particle elastic scattering experiment is on-going.

QCD Phase Diagram

3 Particle Collision

- MORE DENS/TY: Trillision Experiment (3-body colliding)
- 2 particles and 1 target should be needed.
- ALITE is designed at run5-6 of ALICE. **ALI**ce Target Experiement
- Firstly, 3 particle elastic scattering experiment is on-going.

Projectile 2

QCD Phase Diagram

Trillision Experiment

With perturbed scheme, For Background Rejection

Fixed Target Experiment

With perturbed scheme, For Background Rejection

With perturbed scheme, For Background Rejection

But, EVENT BY EVENT trajectory of particles cannot be measured.

Statistical Perturbation should be measured.

With perturbed scheme, For Background Rejection

But, EVENT BY EVENT trajectory of particles cannot be measured.

3 Particle Elastic Scattering in REAL WORLD

Elastic Scattering Experiment

Rutherford's experimental condition

Inspired from Rutherford Scattering ...

Image is from hyperphysics http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

PNU's valid experimental condition

- Radiation Source
 - Am-241 Source **x 2** α -particle with $E_k = 5.486 \text{MeV}$
- Detector
 - ALPIDE100 Detector
- Additional Environment
 - Vacuum Chamber

Elastic Scattering Experiment - more

Rutherford's experimental condition

Inspired from Rutherford Scattering ...

Image is from hyperphysics http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

PNU's valid experimental condition

- Radiation Source
 - Am-241 Source **x 2**
 - α -particle with $E_{\rm k} = 5.486 {\rm MeV}$
- Detector
 - ALPIDE100 Detector
- Additional Environment
 - Vacuum Chamber

Elastic Scattering Experiment - more

Rutherford's experimental condition

Inspired from Rutherford Scattering ...

Image is from hyperphysics http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

- Radiation Source
 - Am-241 Source **x 2**
 - α -particle with $E_{\rm k} = 5.486 {\rm MeV}$
- Detector

- ALPIDE100 Detector

- Additional Environment
 - Vacuum Chamber

Elastic Scattering Experiment - more

Rutherford's experimental condition

Inspired from Rutherford Scattering ...

Image is from hyperphysics http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

- Radiation Source
 - -Am-241 Source **x 2**
 - α -particle with $E_k = 5.486 \text{MeV}$
- Detector

-ALPIDE100 Detector

- Additional Environment
 - Vacuum Chamber

ALPIDE ALICE Plxel DEtector

- 단일 활성 픽셀 센서 기술 (Monolithic Active Pixel Sensor)
 - 픽셀 내에서 스스로 증폭 과정을 거칠 수 있는 기술
- 검출기 내에서 신호 후가공 및 양자화가 모두 가능하도록 내부 프로세서 탑재
 - DAC, ADC 모두 내부에서 자체 해결 가능.
 - 별도의 전선이나 연결부가 없어서, 물질량을 매우 줄일 수 있음.
- 180nm CMOS (complementary Metal-Oxide Semiconductor) 공정
- 29.24 µm × 26.88 µm 픽셀이 1024 × 512 개 있음.
- ALICE 를 위해서 만들어짐. 이후 MPD (NICA) 와 sPHENIX (RHIC) 등에서 활용 계획.

IB: 50µm

15 mm

Experimental Setup (Particle Detection Test)

3D Modeling

Material: PLA (Polylactic Acid) Manufacturer: HIPEx (made by 3D printer) Manufacturing Methode: FDM

In Real Word

Am-241 Source is here!

GEANT4

PLA is also good collimator for L.E. alpha particle! (GEANT4 Simulation with PLA source stand)

Experimental Setup (Particle Detection Test)

3D Modeling

Material: PLA (Polylactic Acid) Manufacturer: HIPEx (made by 3D printer) Manufacturing Methode: FDM

In Real Word

Am-241 Source is here!

GEANT4

PLA is also good collimator for L.E. alpha particle! (GEANT4 Simulation with PLA source stand)

Experimental Setup (Particle Detection Test)

3D Modeling

Manufacturer: HIPEx (made by 3D printer) Manufacturing Methode: FDM

In Real Word

Am-241 Source is here!

GEANT4

PLA is also good collimator for L.E. alpha particle! (GEANT4 Simulation with PLA source stand)

Hitmap In Basics

Hitmap

ALPIDE with low-energy alpha particle

Objective:

To know response of ALPIDE about α particle $E_k = 5.4 \text{MeV}$ to use for next measurement.

General procedure of position independent, sourced measurement for radiation characteristic study

Experiment

Taking data in sourced measurement

Group pixels nearby

Characteristics of components...

- N pixel in a cluster
- N cluster in specific time duration
- N cluster in a timeframe
- Shape of cluster

On chip penetration length dependency

2021/1 PNU Workshop | Tri-Particle Scattering Experiment | 2021.02.25 | MINJAE ISAAC KWON 10

Double Particle Cluster

- 2 Particle is detected, very closely, in same timeframe
- Should be separated.
 - Into 2 particle's 2 positions
 - OR remove in statistics.
- How to recognize?
 - Machine Learning...
 - Thanks to Hyunji Lim!
 - But large dataset needed...

Massive Generation Model Is Needed!

Qupid model

Quasi-Signal Generation Model for *Pi***xelized Detector**

Objective

Fired pixel cluster shape generation to use for machine learning

- Based on Python3 (numpy, scipy)
- Procedure
 - Define signal amplitude distribution function (ADF) on ____ detector plane
 - Calculate signal in pixel with integrating ADF with for each pixel.
 - Find pixel which has signal over threshold.

Github Repository: <u>https://github.com/Isaac-Kwon/qupid</u> Documentation : <u>https://isaac-kwon.github.io/qupid</u>

Analogue Signal Distribution Digital Signal Distribution (Integrated Signal)

Qupid model

Quasi-Signal Generation Model for *Pi***xelized D**etector

Objective

Fired pixel cluster shape generation to use for machine learning

- Based on Python3 (numpy, scipy)
- Procedure
 - Define signal amplitude distribution function (ADF) on ____ detector plane
 - Calculate signal in pixel with integrating ADF with for each pixel.
 - Find pixel which has signal over threshold.

Github Repository: <u>https://github.com/Isaac-Kwon/qupid</u> Documentation : <u>https://isaac-kwon.github.io/qupid</u>

Digital Signal Distribution (Integrated Signal)

Qupid model

Quasi-Signal Generation Model for *Pi***xelized Detector**

Objective

Fired pixel cluster shape generation to use for machine learning

- Based on Python3 (numpy, scipy)
- Procedure
 - Define signal amplitude distribution function (ADF) on detector plane
 - Calculate signal in pixel with integrating ADF with for each pixel.
 - Find pixel which has signal over threshold.

Github Repository: <u>https://github.com/Isaac-Kwon/qupid</u> Documentation : https://isaac-kwon.github.io/qupid

Digital Signal Distribution (Integrated Signal)

2021/1 PNU Workshop | Tri-Particle Scattering Experiment | 2021.02.25 | MINJAE ISAAC KWON 12

Model vs Reality 실제와 모델이 맞아야 모델이지

Summary & Outlook

- Base study for 3 particle elastic scattering experiment is on-going -ALPIDE has energy dependent detection efficiency.
 - Cross-check experiment will be done.
 - Double cluster finder is now developing.
- Concept of Experimental Geometry for real experiment is designed. -For background rejection, additional experiment needed.
- Further experiment, analysis will be designed and done.

koALICE National Workshop 2020, 16JAN2021, MINJAE ISAAC KWON

FILIPATION OF THE SECOND

ALITE in RUN4

- - Closer IP
 - Trillision (3 nuclei collision) event?
- Silicon R&D + Production for ALICEs in RUN5-6
 - ITS3 + 7 tracking barrel layers +
 - (Active Target Experiment at SPS)
- Exploring QCD diagram with Charm

Development of NEW Data-taking methode with new-alpide-software

 \bullet

Solving memory problem

- Previous: Make histogram in every timeframe (1 hist = ~ 4MB)
- Generally, 1pix 400 pix / 1 timeframe $1 \text{pix} = 20 \text{ byte} \rightarrow \text{Not whole histogram needed.}$
- Modify class to save fired pixel only.

Solving time budget problem

- Previous: Whole bins in histogram are parsed.
 - Unnecessary bins are parsed.
 - Analyzing, writing time > trigger time
 - -Data is stacked \rightarrow Memory getting full.
- -Modify class passing **fired pixel only**.
 - Not needed to parsing whole bin.
 - Now: Analyzing, writing time \ll trigger time (~10times)
- * deque : Double-Ended Queue. : Changed Part can be thought as "list"

Developed Programs for This Project

- new-alpide-software (forked)
 - Datataking software for ALPIDE https://gitlab.cern.ch/mkwon/new-alpide-software
- RooParticle
 - (Numerical) Particle Scattering Simulator with ROOT https://github.com/Isaac-Kwon/RooParticle
- QUPID
 - Quasi-Signal Generation Model for Pixelized Detector https://github.com/Isaac-Kwon/QUPID, https://isaac-kwon.github.io/QUPID

N (n>1) particle cluster data generation

Am-241 실험의 클러스터 크기 vs Fe-55 실험의 클러스터 크기? (I=14mm)

입자수 예상 과정 14mm 실험과 24mm 실험, 두 실험의 교차검증과정

14mm Incident particle 200k 12070 α **GEANT4** 1,000k V 22431 1/5 scaling 실험 $\alpha + \gamma$ 138748 ? 입사 비율 계산 시간에 대한 조정변수 $= T_n = \alpha_{exp,n} + \gamma_{exp,n}$ A_n $(\alpha_n + \gamma)$ 14mm 관련 $A_{14} = 4.02156$ $\rightarrow \alpha_{exp,14} = T_{14} \frac{1}{\alpha_{14} + \gamma_{14}} \rightarrow \alpha_{exp,24}$ = 48540.3 $\rightarrow \gamma_{exp,14} = T_{14} \frac{\gamma_{14}}{\alpha_{14} + \gamma_{14}} = 90207.7 \qquad \rightarrow \gamma_{exp,24}$

$$_{n}$$
 [for $n = 14, 24$]

24mm 관련

$$I = 2.8153$$

$$I = T_{24} \frac{\alpha_{24}}{\alpha_{24} + \gamma_{24}} = 21984.7$$

$$I = T_{24} \frac{\gamma_{24}}{\alpha_{24} + \gamma_{24}} = 28392.3$$

현재까지 진행한 실험/시뮬레이션

- Am-241 실험 (*α*, *γ* 가 섞임)
 - 14mm
 - 24mm
- Am-241 실험과 동일한 기하구조의 GEANT4 실험
 - 14mm α
 - 24mm α
 - 14mm γ
 - 24mm γ

입자수 예상 과정 v2 두 실험의 교차검증과정

HIPEx Local Meeting | Am-241 로부터 방사되는 입자의 갯수 분석 | 2021.01.15 | MINJAE ISAAC KWON 21

GEANT4 에 의해 형성된 알파 입자의 궤적

실험 구성 (실제) 실험 셋업 과정

베이스

ALPIDE + 어댑터 올린 후 (어댑터 베이스를 잘못 맞춰서 한칸 옮겼음)

소스가 올라갈 브릿지를 올리고 고정

(ALPIDE 로부터 유리를 먼저 제거했음. 생략된 장면.)

Hitmap

Clustering\

그래서 뭐가 문제일까?

종합하면... 아직 잘 모르겠음 다만, 시뮬레이션 스텝이 실리콘에서 한번밖에 없어서, 정확도에 영향이 있어보임. → **분석이 더 필요한 이유.**

11 um 이후부터 잃어버리는 에너지가 2 MeV보다 커야할 것.

그래서 뭐가 문제일까?

종합하면... 아직 잘 모르겠음 다만, 시뮬레이션 스텝이 실리콘에서 한번밖에 없어서, 정확도에 영향이 있어보임. → **분석이 더 필요한 이유.**

11 um 이후부터 잃어버리는 에너지가 2 MeV보다 커야할 것.