

Hadronic Resonance Analysis with ALICE at the LHC

Bong-Hwi Lim (Pusan National University, KR)

In Light Flavour(Strangeness)

- Short lifetimes \bullet
 - Comparable to <u>Hadronic Phase</u>

Excited States

PNU-WorkShop - Bong-Hwi / 2021-02-25

• Can compare results to other particles with <u>similar quark content</u>

In Light Flavour(Strangeness)

Hadron yields fixed momenta fixed

In Light Flavour(Strangeness)

PNU-WorkShop - Bong-Hwi / 2021-02-25

In Light Flavour(Strangeness)

In Light Flavour(Strangeness)

PNU-WorkShop - Bong-Hwi / 2021-02-25

Characteristics // knobs

PNU-WorkShop - Bong-Hwi / 2021-02-25

Characteristics // knobs

Various masses

PNU-WorkShop - Bong-Hwi / 2021-02-25

Characteristics // knobs

Various masses

Characteristics // knobs

Various masses

Different hadron class / **Strangeness**

PNU-WorkShop - Bong-Hwi / 2021-02-25

Characteristics // knobs

Various masses

Different hadron class / **Strangeness**

RESONANCES may have control knobs that can be used to study the hadronic phase.

PNU-WorkShop - Bong-Hwi / 2021-02-25

The ALICE detector

PNU-WorkShop - Bong-Hwi / 2021-02-25 estimator

Multi-purpose detector at the LHC with unique **particle identification** capabilities and tracking down to **very** low momenta

Central Barrel Detectors ($|\eta| < 1$)

ITS $(|\eta| < 0.9)$

- 6 layers of silicon detectors
- Trigger, tracking, vertex, PID (dE/dx)
- TPC ($|\eta| < 0.9$)
 - Gas-filled ionization detection volume
 - Tracking, vertex, PID (dE/dx)
- TOF ($|\eta| < 0.9$)
 - Multi-gap resistive plate chambers
- PID (β , time of flight) V0 [V0A ($2.8 < \eta < 5.1$) & V0C
 - $(-3.7 < \eta < -1.7)]$
 - Arrays of scintillators
 - Trigger, beam gas rejection, **Multiplicity**

The ALICE detector

PNU-WorkShop - Bong-Hwi / 2021-02-25

ALICE Performance

Pb–Pb $s_{NN} = 5.02 \text{ TeV}$

р (GeV/*c*)

Multi-purpose detector at the LHC with unique **particle identification** capabilities and tracking down to **very** low momenta

Central Barrel Detectors ($|\eta| < 1$)

ITS $(|\eta| < 0.9)$

- 6 layers of silicon detectors
- Trigger, tracking, vertex, PID (dE/dx)

TPC ($|\eta| < 0.9$)

- Gas-filled ionization detection volume
- Tracking, vertex, PID (dE/dx)
- TOF ($|\eta| < 0.9$)
 - Multi-gap resistive plate chambers
- PID (β , time of flight) V0 [V0A ($2.8 < \eta < 5.1$) & V0C
 - $(-3.7 < \eta < -1.7)]$
 - Arrays of scintillators
 - Trigger, beam gas rejection, **Multiplicity** estimator

The ALICE detector

PNU-WorkShop - Bong-Hwi / 2021-02-25 estimator

VOC

Multi-purpose detector at the LHC with unique **particle** • **identification** capabilities and tracking down to **very** low momenta

Central Barrel Detectors ($|\eta| < 1$)

ITS $(|\eta| < 0.9)$

- 6 layers of silicon detectors
- Trigger, tracking, vertex, PID (dE/dx)

TPC ($|\eta| < 0.9$)

- Gas-filled ionization detection volume
- Tracking, vertex, PID (dE/dx)
- TOF ($|\eta| < 0.9$)
 - Multi-gap resistive plate chambers
- PID (β , time of flight) V0 [V0A ($2.8 < \eta < 5.1$) & V0C
 - $(-3.7 < \eta < -1.7)$]
 - Arrays of scintillators
 - Trigger, beam gas rejection, **Multiplicity**

"Multiplicity"

Small system // Large system

- System size may refer...
 - Size of the colliding objects
 - Common way of thinking
 - (ee <) pp < pA < AA
 - Size of the created medium
 - Correspondence to the previous true only on average
 - $N_{\text{part}}, N_{\text{coll}}, Multiplicity$

Multiplicity: Number of particles produced in a defined kinematic region. ${\color{black}\bullet}$

- Estimated by <u>Multiplicity estimator</u>
 - Categorize each event according to its multiplicity

ALI-PERF-131160

PNU-WorkShop - Bong-Hwi / 2021-02-25

Example of Analysis: E(1530)^o

Scheme-Procedure

Final Goal: Get the number(N) of produced particle in specific condition.

What we want to get

Event Selection

Analysis Flow: \bullet

Event Selection ->

Track Reconstruction \rightarrow

- **Used Detectors:** \bullet
 - **ITS**: Trigger / Tracker / Vertexer
 - **V0**: Trigger / Multiplicity Estimator \bullet
 - **TPC**: Tracker / PID(dE/dX) \bullet

PNU-WorkShop - Bong-Hwi / 2021-02-25

 \bullet

Track Reconstruction

- **Data set:** Recommended pp 13 TeV collision, **<u>1.59B events</u>**
- LHC16deghijklop_17cefgijklmor_18bdefghikmnop
- **Trigger:** kINT7, Minimum bias trigger (VOA && VOC) \bullet
- **Event cuts:** lacksquare

Event Selection

- IsIncompleteDAQ \bullet
- **IsSPDClusterVsTrackletBG** \bullet
- **IsNotPileupSPDInMultBins** \bullet
- Good Vertex Selection: \bullet
 - zVertex | < 10 cm \bullet
 - SPDVertex dispersion < 0.04 cm \bullet
 - zVertex resolution < 0.25 cm \bullet
 - z-position difference < 0.5 cm \bullet
- IsSelected in AliMultSelection \bullet

MC Correction Final Result \rightarrow

 \rightarrow

PNU-WorkShop - Bong-Hwi / 2021-02-25

Analysis Details

 \rightarrow

- Decay channel: $\Xi^{*0} \rightarrow \Xi^{-} + \pi^{+}$
- **Basic concept:** Select π , and Select Ξ and apply topological cuts
 - Good π Selection(Track cut):
 - Standard 2011 ITS-TPC Track cut(<u>link</u>) with Primary cut option
 - η < | 0.8 |
 - $p_{\rm T} > 0.15 \, {\rm GeV/c}$
 - TPC PID(π) sigma < 3
 - zVertex dispersion < 2.0 cm
 - Good E Selection(Track cut):
 - Reject AcceptKinkDaughters
 - Number of Clusters in TPC > 50
 - Require TPC Refit \bullet
 - Chi2 Per Cluster TPC < 4
 - $p_{\rm T} > 0.15 \, {\rm GeV/c}$
 - TPC PID (π, p) sigma < 3

MC Correction Final Result \rightarrow

Analysis Details

Track Reconstruction Event Selection \rightarrow \rightarrow

- **Topological Selection:**
 - DCA of Λ to PV > 0.07 cm
 - DCA between Λ daughters < 1.6 cm
 - DCA Λ and second emitted pion < 1.6 cm
 - Decay length xy of $\Lambda > 1.4$ cm
 - Decay length xy of $\Xi \mp > 0.8$ cm
 - Fiducial limit of Λ and $\Xi \mp = 100$ cm
 - Cosine of pointing angle of $\Lambda > 0.97$
 - Cosine of pointing angle of $\Xi \mp > 0.97$
 - Mass Window of Λ and $\Xi \mp = \pm 6 \text{ MeV/c2}$
 - Ξ(1530)0 |y|<0.5

Final Result

 \rightarrow

MC Correction

PNU-WorkShop - Bong-Hwi / 2021-02-25

PNU-WorkShop - Bong-Hwi / 2021-02-25

Reconstructed Signal - Background, fit (0-100% Minimum Bias)

PNU-WorkShop - Bong-Hwi / 2021-02-25

Final Result →

Analysis Details

• Raw yield distribution

PNU-WorkShop - Bong-Hwi / 2021-02-25

IC Correction) → Final Result

Analysis Detail:

Track Reconstruction

- **Corrections:**

- consistent with in their stat.error.

PNU-WorkShop - Bong-Hwi / 2021-02-25

• Using the fit functions, such as Levy-Tsallis, missing parts (low p_{T} , high

PNU-WorkShop - Bong-Hwi / 2021-02-25

Focus on particle ratios: K^* and ϕ

Suppression vs Constant

ALI-PREL-156810

<u>Suppression</u> of K^*/K yield ratio in high multiplicity events (AA Collisions)

- Shows reducing yield trend from low(pp) to high multiplicity
- Yields in central AA collisions below <u>Thermal model prediction</u>.

<u>Constant</u> ϕ/K yield ratio

- Consistent with <u>Thermal model prediction</u>.
- ϕ lifetime is ~ 10 times longer than K*

Suggests <u>Re-scattering</u> of K^* decay products in hadronic phase.

QGP

• K^*/K yield suppression in high-multiplicity pp, p-Pb?

Focus on particle ratio: K^* and ϕ

Suppression vs Constant; Theory?

- (Re-)Scattering effects modeled with UrQMD [1]
 - The effect is more pronounced in K^* than ϕ
- Qualitatively describes the trend from low to high multiplicity in K^*

Suppression vs Constant

(fm/c) Lifetime \rightarrow 46.3

Suppression vs Constant

-- EPOS3 (UrQMD OFF)

Suppression vs Constant

-- EPOS3 (UrQMD OFF)

PNU-WorkShop - Bong-Hwi / 2021-02-25

Suppression vs Constant

-- EPOS3 (UrQMD OFF)

Suppression vs Constant

Suppression vs Constant

- ♦ pp $\sqrt{s} = 7 \text{ TeV}$
- p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ \blacklozenge pp $\sqrt{s} = 7 \text{ TeV}$
- \Box Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV \times p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

- pp √*s* = 2.76 TeV

- ⊕ Xe-Xe $\sqrt{s_{NN}}$ = 5.44 TeV
 Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

 $rac{1}{10}$ Au-Au $\sqrt{s_{NN}}$ = 200 GeV

★ pp √s = 200 GeV

- EPOS3 PRC 93 014911 (2015)
- -- EPOS3 (UrQMD OFF)

Strangeness enhancement in small systems

• Does it really come from the strangeness?

• How about baryon number, mass?

• <u>Baryon number?</u> -

• <u>Mass</u>? -

Baryon	Mass (MeV/c²)	S
Ω	1672	3
Ξ	1530	2
Σ*	1385	1
Ξ	1322	2
٨	1116	1
р	938	0

PNU-WorkShop - Bong-Hwi / 2021-02-25

PNU-WorkShop - Bong-Hwi / 2021-02-25

Strangeness enhancement in small systems

• Does it really come from the strangeness?

• How about baryon number, mass?

- <u>Baryon number?</u> X
 - Double ratio for p/π is 1

• <u>Mass?</u> -

Baryon	Mass (MeV/c²)	S
Ω	1672	3
Ξ	1530	2
Σ*	1385	1
Ξ	1322	2
٨	1116	1
р	938	0

Strangeness enhancement in small systems

- Does it really come from the strangeness?
- How about baryon number, mass?
 - <u>Baryon number?</u> X
 - Double ratio for p/π is 1
 - <u>Mass?</u> X
 - $\Sigma(1385)$ is heavier than Ξ but follows Λ , $\Xi(1530)$ follows Ξ

Baryon	Mass (MeV/c²)	S
Ω	1672	3
Ξ	1530	2
Σ*	1385	1
Ξ	1322	2
٨	1116	1
р	938	0

PNU-WorkShop - Bong-Hwi / 2021-02-25

Strangeness enhancement in small systems

- Does it really come from the strangeness?
- How about baryon number, mass?
 - <u>Baryon number?</u> X
 - Double ratio for p/π is 1
 - <u>Mass?</u> X
 - $\Sigma(1385)$ is heavier than Ξ but follows Λ , $\Xi(1530)$ follows Ξ

• Solid conclusion:

O <u>Enhancement</u> in small system comes from <u>Strangeness</u>

Baryon	Mass (MeV/c²)	S
Ω	1672	3
Ξ	1530	2
Σ*	1385	1
Ξ	1322	2
٨	1116	1
р	938	0

PNU-WorkShop - Bong-Hwi / 2021-02-25

Summary

- - An Example of Resonance Analysis was shown.
 - From the Event Selection to the Final spectra.
 - - Short-lived particles (ho, K*, Λ *) Suppressed
 - Re-scattering > Re-generation
 - $\Xi(1530)$ could be suppressed
 - Long-lived particles (ϕ) not suppressed
 - <u>Lifetime is not the only consideration</u> ($\Sigma(1385)$)

Resonances are useful tools to probe the characteristics of the hadronic phase.

Various masses, lifetimes, particle types, strangeness...

ALICE has measured a rich set of resonance particles in various systems.

(Non-)Suppression of Resonances in large collision system

Strangeness enhancement in p-Pb was due to the strangeness, not mass, baryon number

PNU-WorkShop - Bong-Hwi / 2021-02-25

Summary

- - An Example of Resonance Analysis was shown.
 - From the Event Selection to the Final spectra.
 - - Short-lived particles (ρ , K*, Λ *) Suppressed
 - Re-scattering > Re-generation
 - $\Xi(1530)$ could be suppressed
 - Long-lived particles (ϕ) not suppressed
 - <u>Lifetime is not the only consideration</u> ($\Sigma(1385)$)

Resonances are useful tools to probe the characteristics of the hadronic phase.

• Various masses, lifetimes, particle types, strangeness...

ALICE has measured a rich set of resonance particles in various systems.

(Non-)Suppression of Resonances in large collision system

Strangeness enhancement in p-Pb was due to the strangeness, not mass, baryon number

PNU-WorkShop - Bong-Hwi / 2021-02-25

Backup

 $\rho(770), \Sigma(1385)^{\pm}$

$\Lambda(1520), \Xi(1530)^0$

ALI-PREL-129193

Δ^{++} in RHIC

B. I. Abelev et al. (STAR Collaboration) Phys. Rev. C 78, 044906 , t = 1.6 fm

B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 79, 034909 (2009). arXiv:0808.2041

PNU-WorkShop - Bong-Hwi / 2021-02-25

Particle ratio Φ/K

J. Adamczewski-Musch et al. (HADES), Phys. Lett. B 778, 403 (2018), arXiv:1703.08418.

