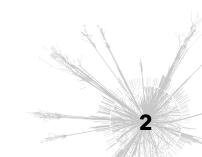
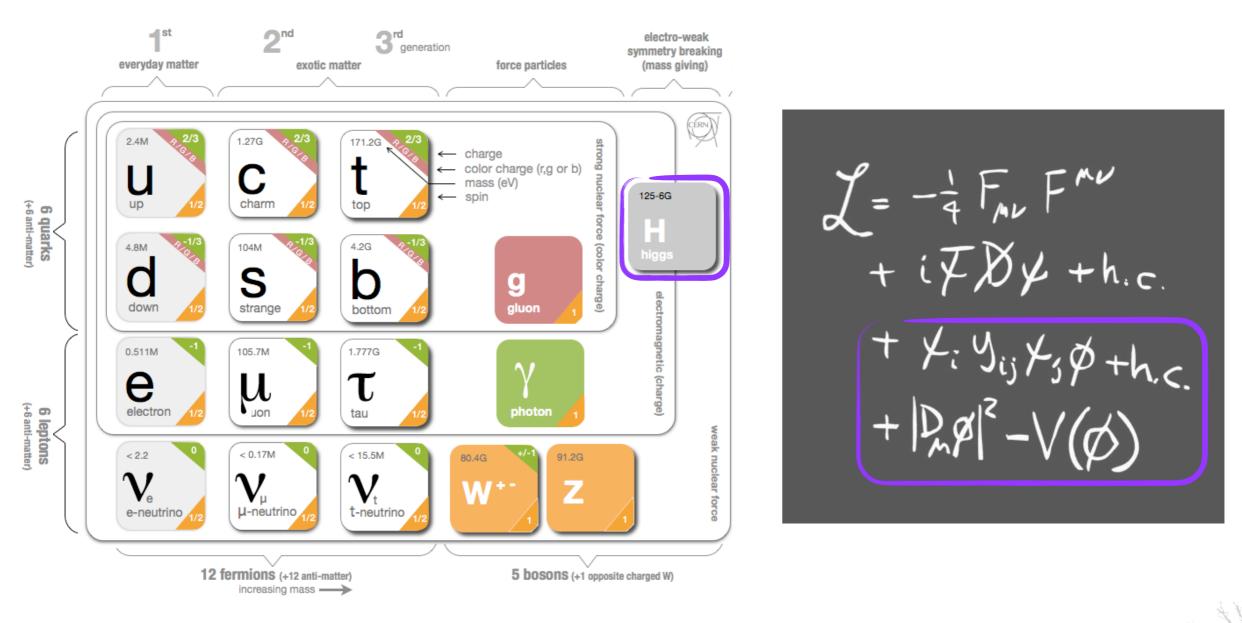
Probing the top and Higgs sectors using multilepton with the $\sqrt{2}$ and multibjets events UZH & City of Zurith 👖

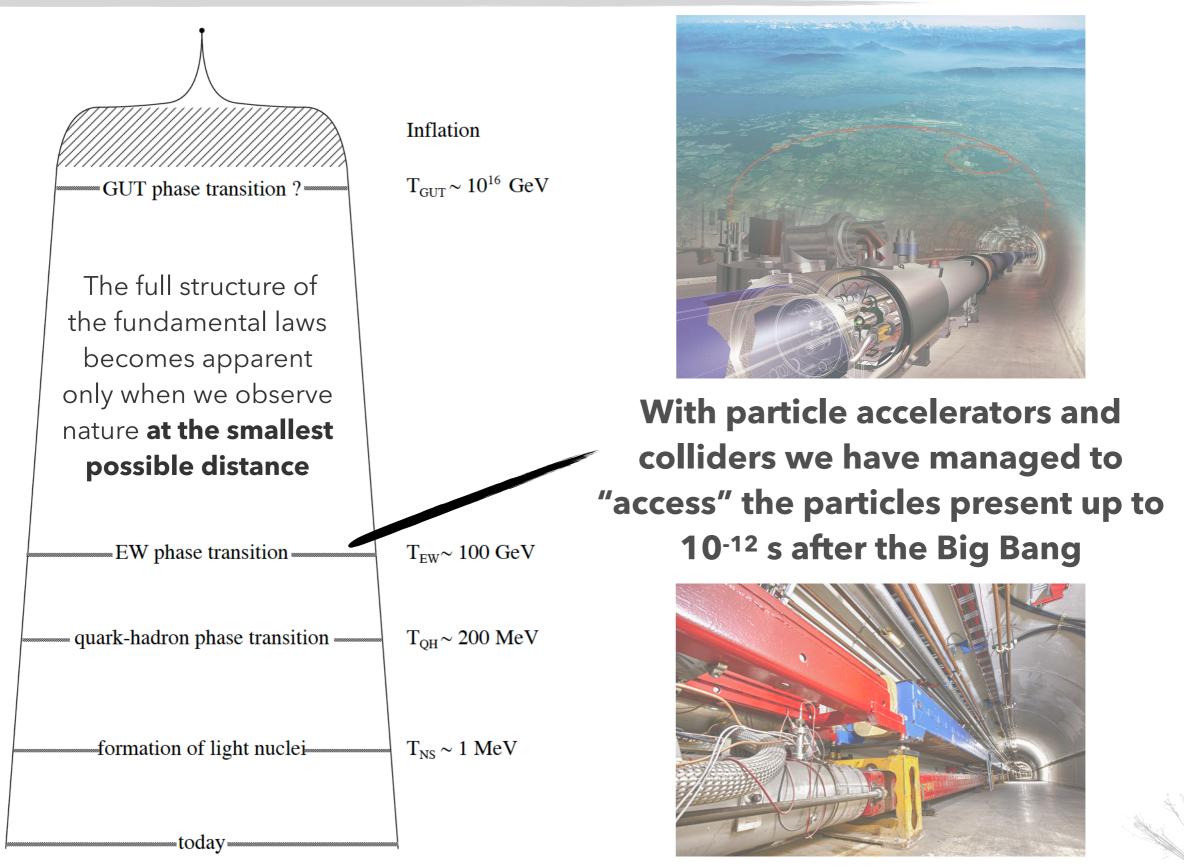

Photograph: ATLAS Collaboration

Tamara Vázquez Schröder CERN Experimental Particle and Astro-Particle Physics Seminar

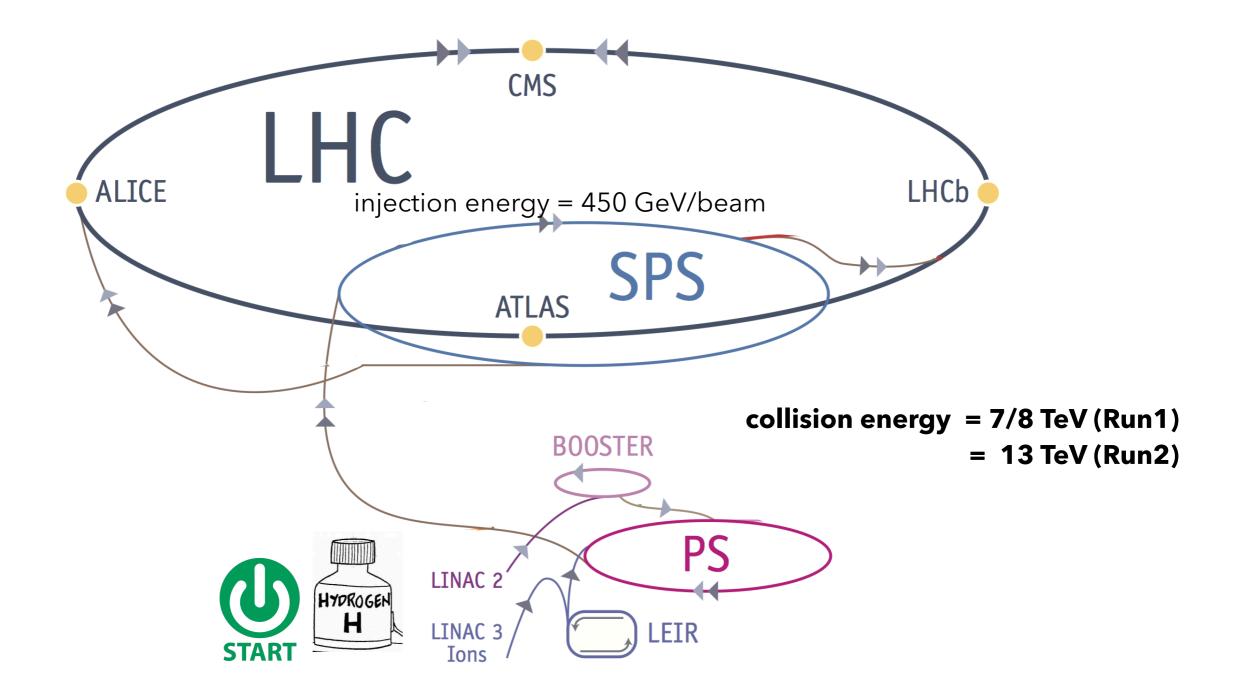
Zürich - 12 April 2021


Why particle colliders?

• To understand the fundamental description of Nature

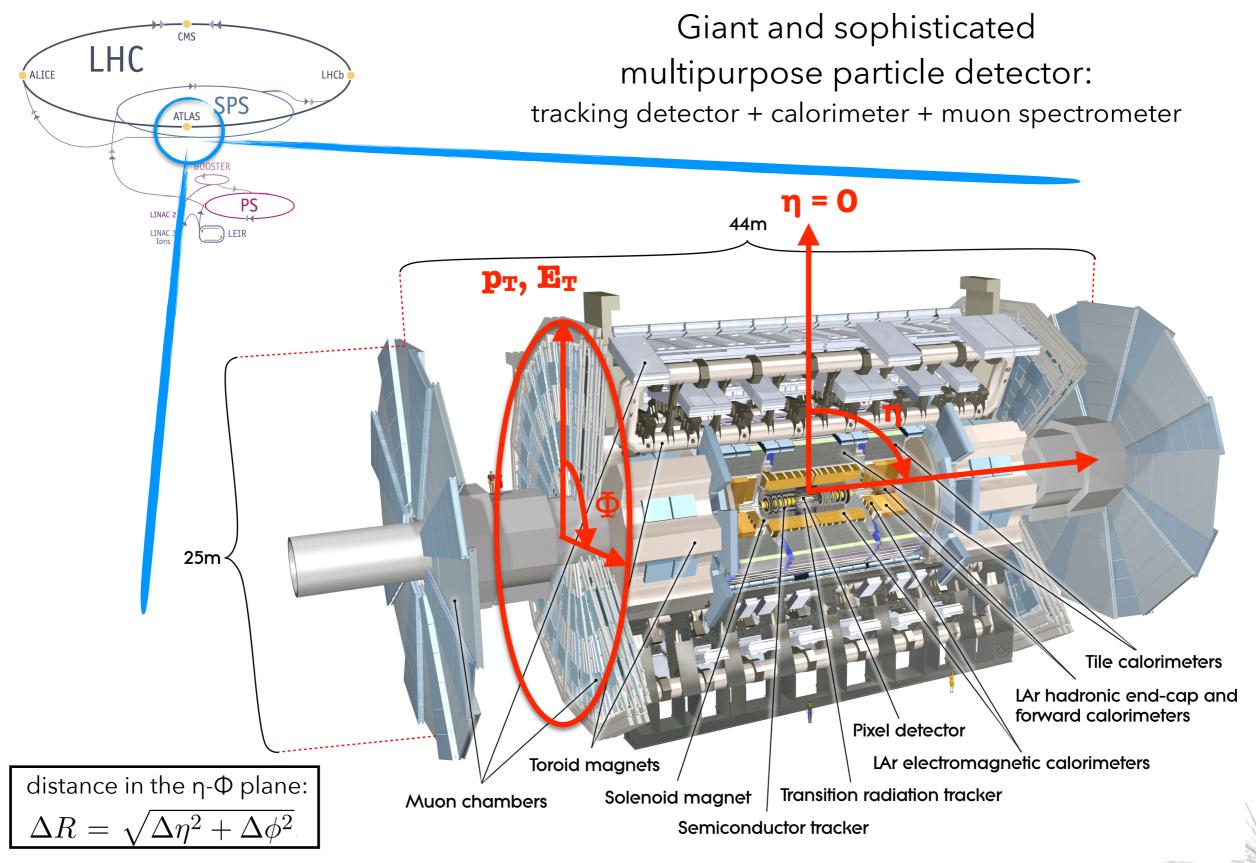

Why particle colliders?

- To understand the fundamental description of Nature
- Best Model so far: The Standard Model of Particle Physics

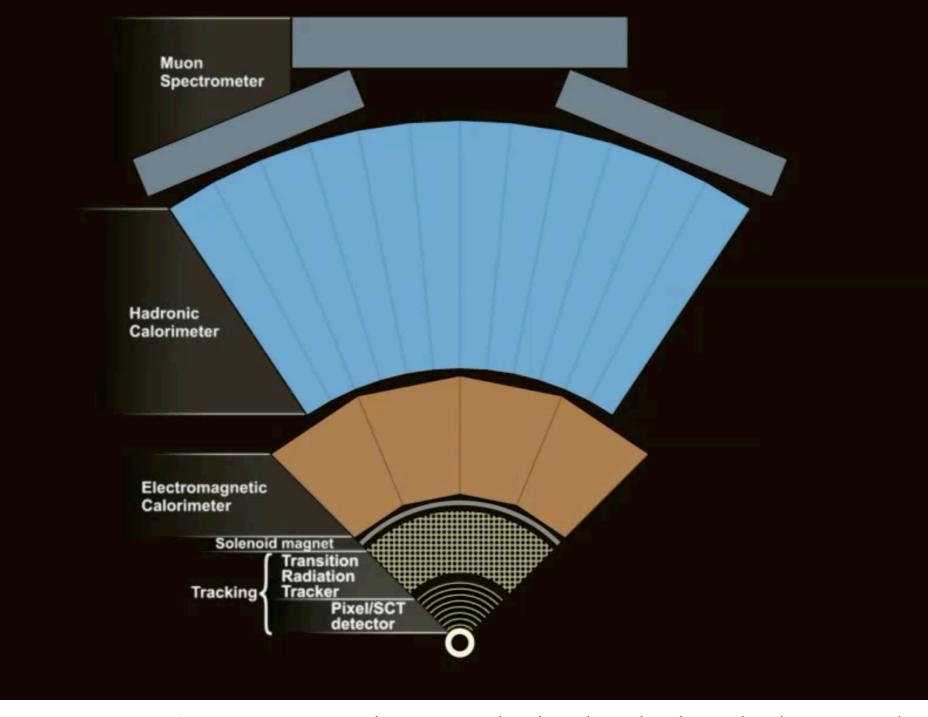


• Higgs field: added to the SM to generate the mass of EW bosons and fermions

Starting from the beginning

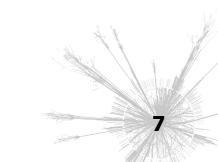


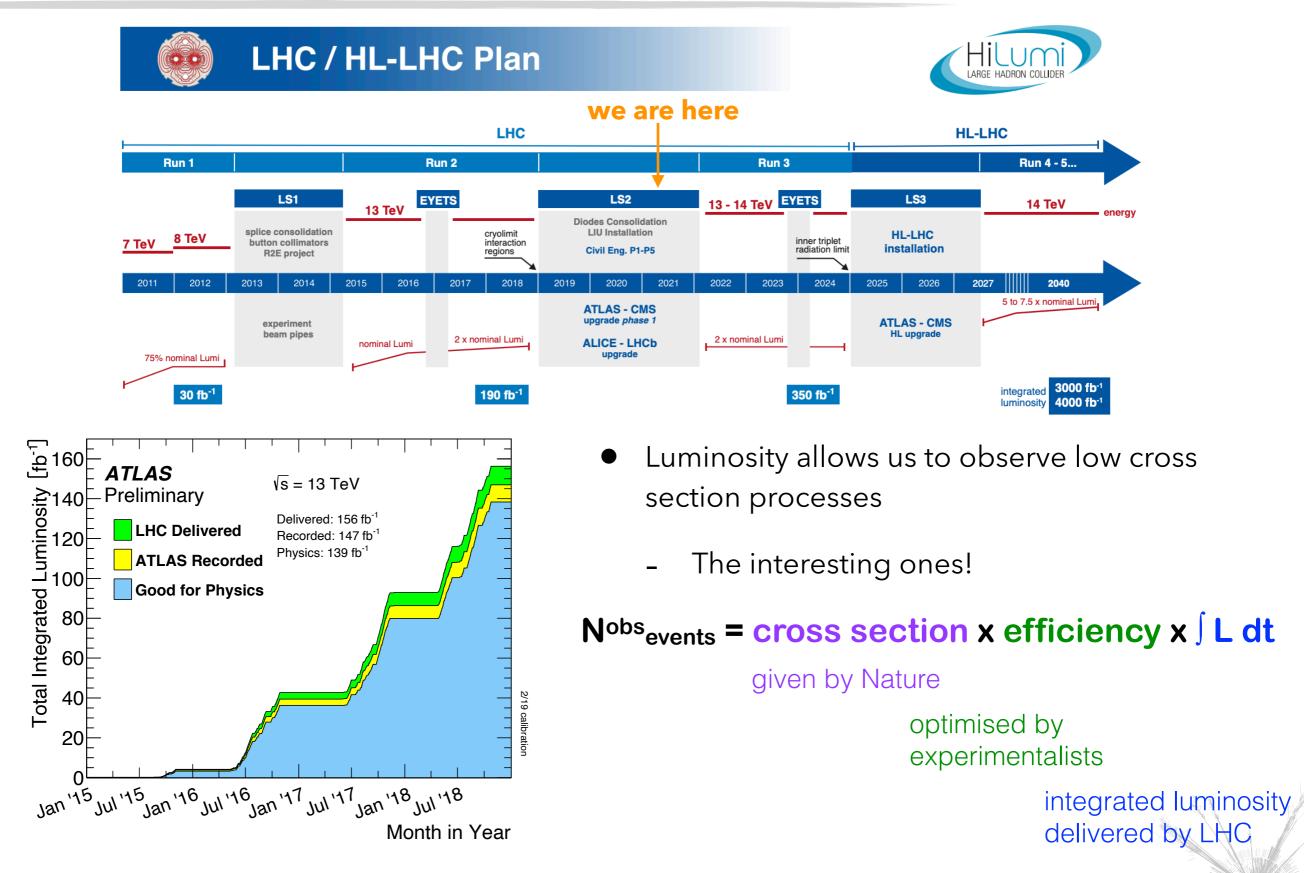
The Large Hadron Collider (LHC)



The CERN accelerator complex & the collider

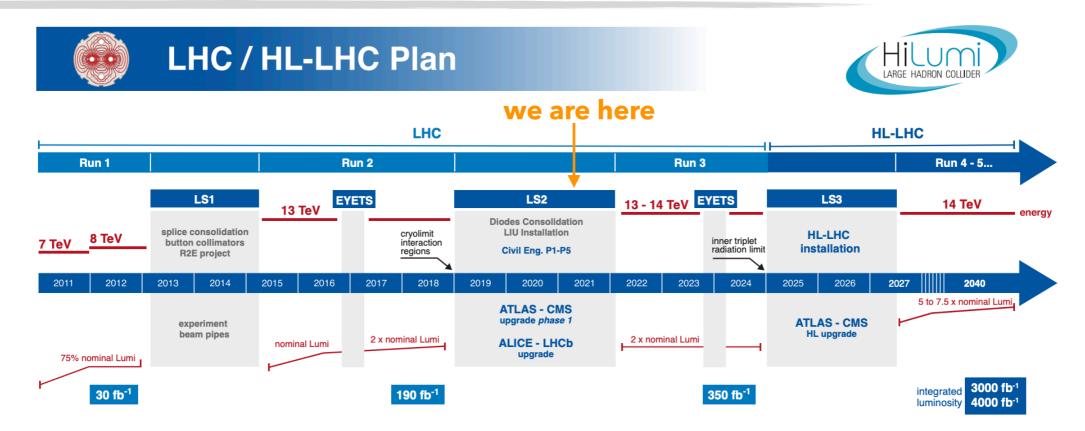
The ATLAS experiment

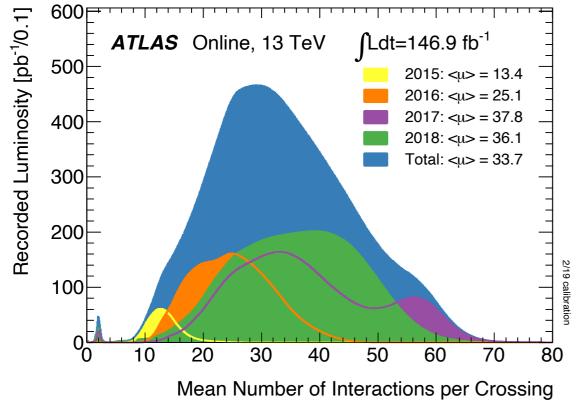

Particle identification


ATLAS Experiment © 2014 CERN

http://www.atlas.ch/multimedia/#how-atlas-detects-particles

- Each layer, different interaction with particles, different targets
- Energy, momentum, measurements


The LHC plan



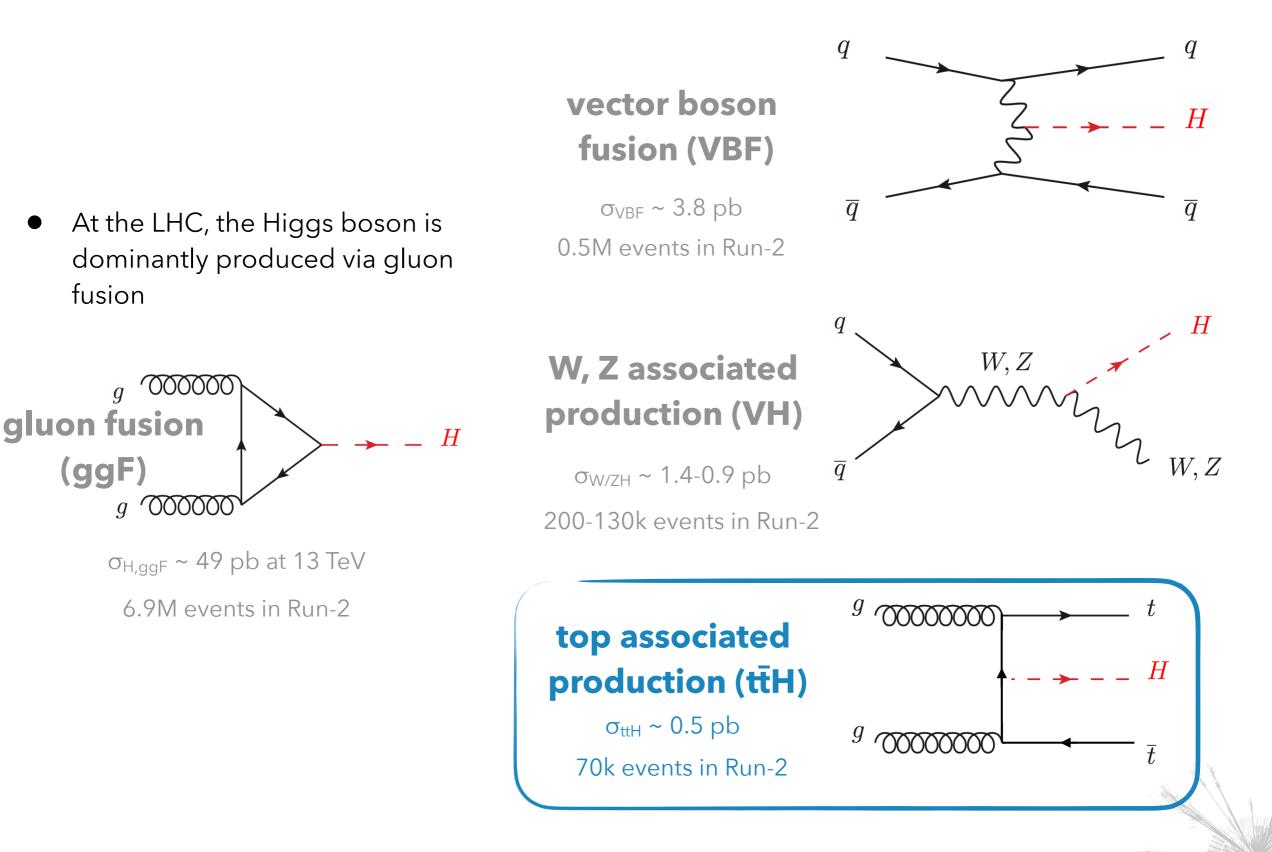
Probing top and Higgs in multil and multib events Zürich 12-04-21 Tamara Vazquez Schröder (CERN)

8

The LHC plan

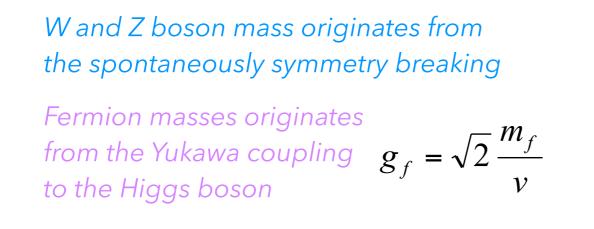
- But high luminosity comes with a challenge:
 Pile up (additional interactions occurring in the same bunch crossing as the collision of interest)
 - Controlling trigger rates at high interaction per bunch crossing
 - Online and offline reconstruction performance maintained even at the highest pile-up

The Higgs boson

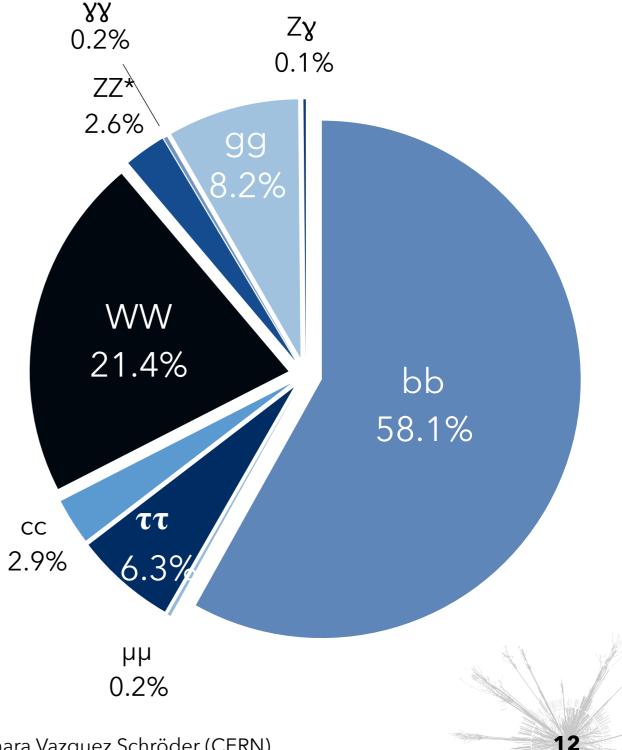


- The primary goal of the LHC is to discover the mechanism of electroweak symmetry breaking
- The Higgs mechanism predicts the observation of a spin-0 particle: the Higgs boson
 - While the Yukawa couplings are defined with respect to the Higgs field, they equally determine the strength of the coupling to the Higgs boson

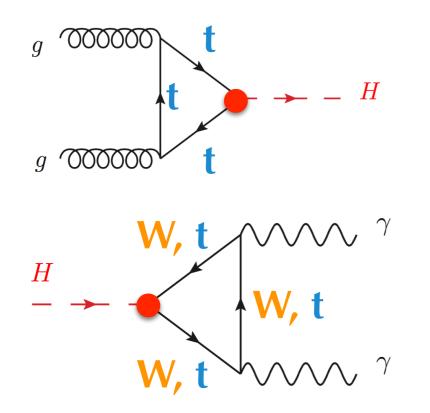
 $V(\phi) = \mu_{<0}^{2} \left|\phi\right|^{2} + \lambda \left|\phi\right|^{4} + Y^{ij} \psi_{L}^{i} \psi_{R}^{j} \phi$


- The SM predicts all its properties, **except for its mass**
- Higgs boson discovered in 2012, already a standard candle of Standard Model!

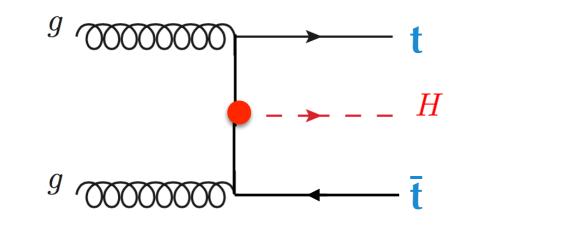
The Higgs boson: production

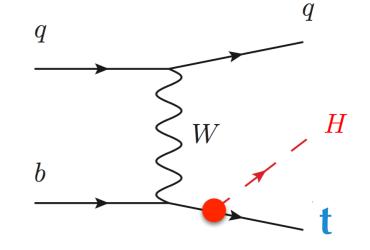


The Higgs boson: decay


• The Higgs decays with preference to the heaviest particles allowed

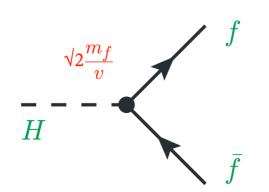
- The Higgs does not couple directly to photons and gluons, but only via "loops" of heavy particles (e.g.: top, W-boson)
- Though bb decays are the most dominant, they are very **difficult to reconstruct and have broad mass resolution**
 - contrary to $\gamma\gamma$ and ZZ(\rightarrow 4 ℓ)


Top & Higgs



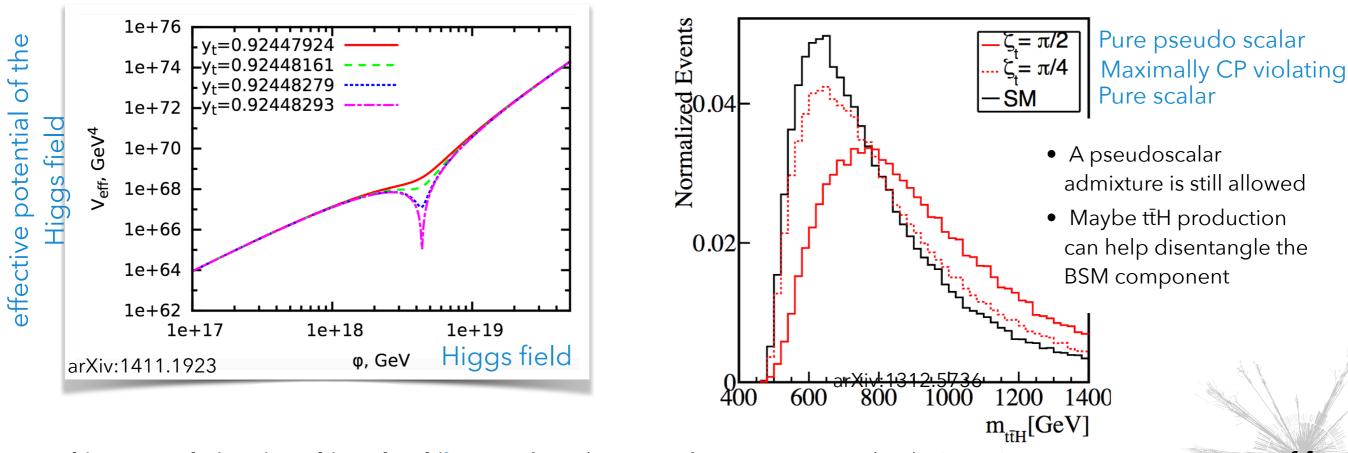
indirect top Yukawa coupling (y_{top}) constraints from gluon fusion production and $\gamma\gamma$ decay...

... assuming no additional heavy particles which could couple to the Higgs boson!


direct top Yukawa coupling measurement only possible at the LHC via ttH and tH

ytop ... why should we care?

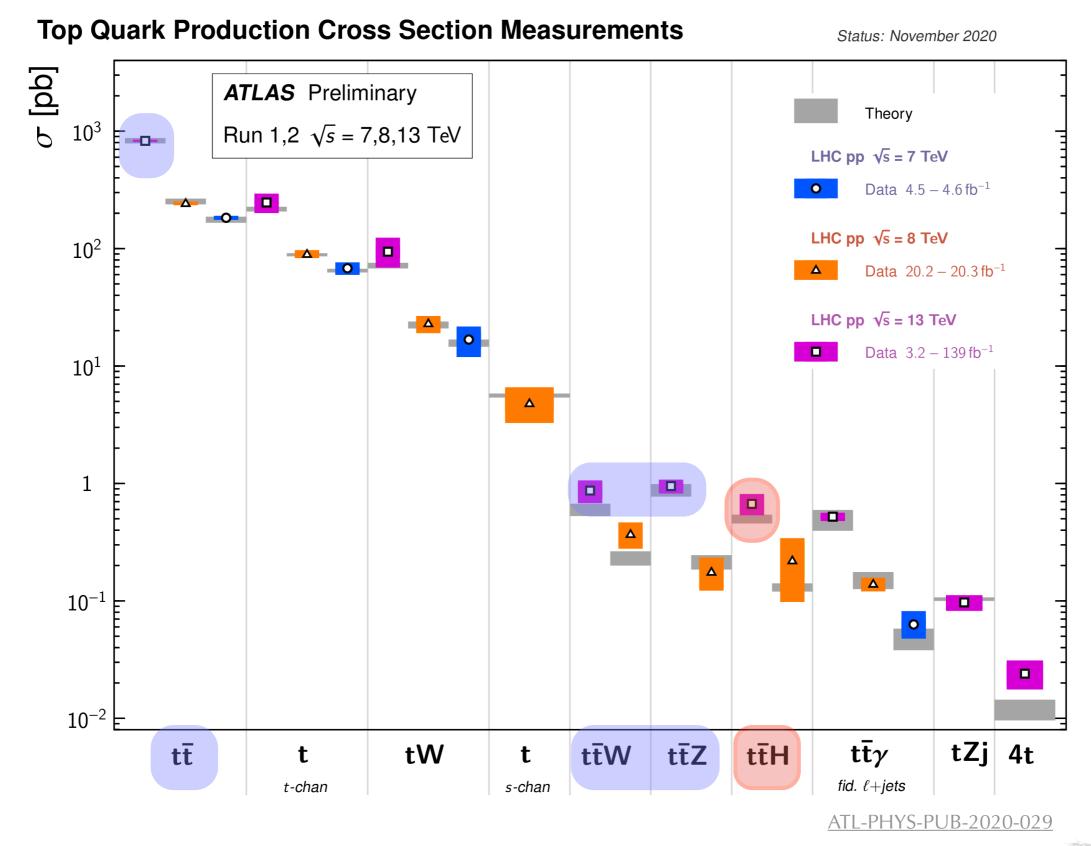
Top quark is the heaviest fermion in the SM → Largest Yukawa coupling



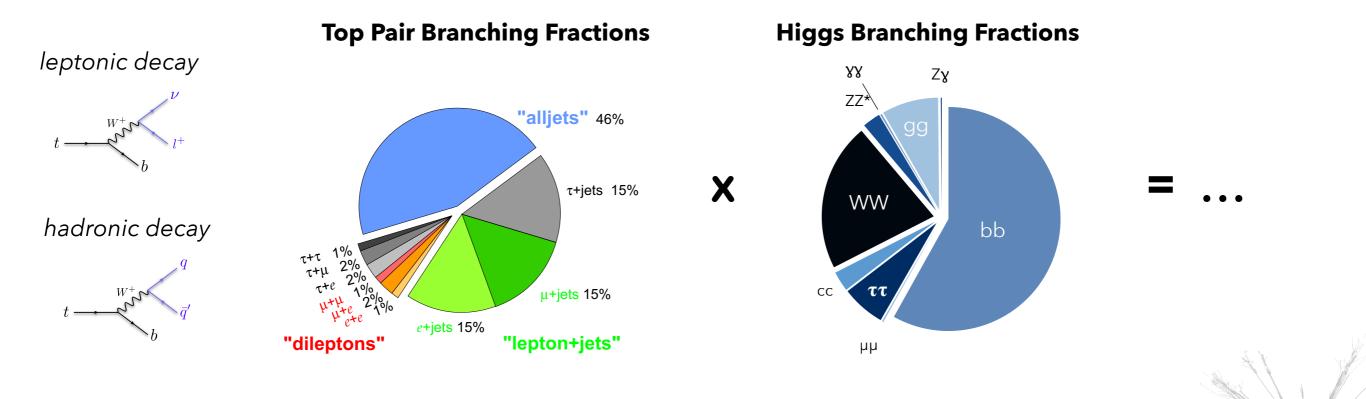
The only fermion with predicted Yukawa coupling ~ 1

- Does this point to a special role in electroweak symmetry breaking or beyond the SM physics?
- Top quark Yukawa coupling is relevant for the stability of the Higgs potential and the required energy scale for new physics

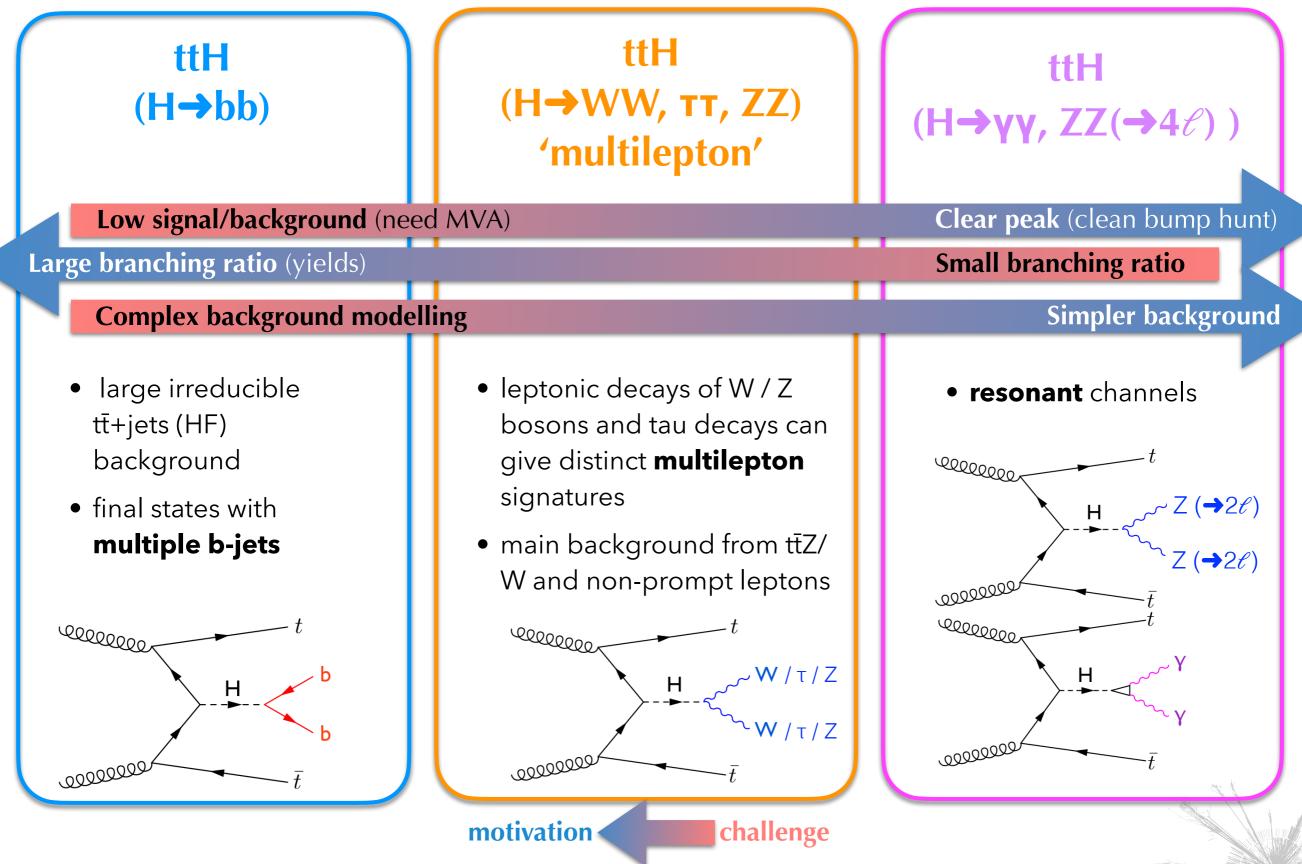
What is the CP nature of the Higgs boson?


Is the Universe stable or only metastable?

Probing top and Higgs in multil and multib events | Zürich 12-04-21 | Tamara Vazquez Schröder (CERN)

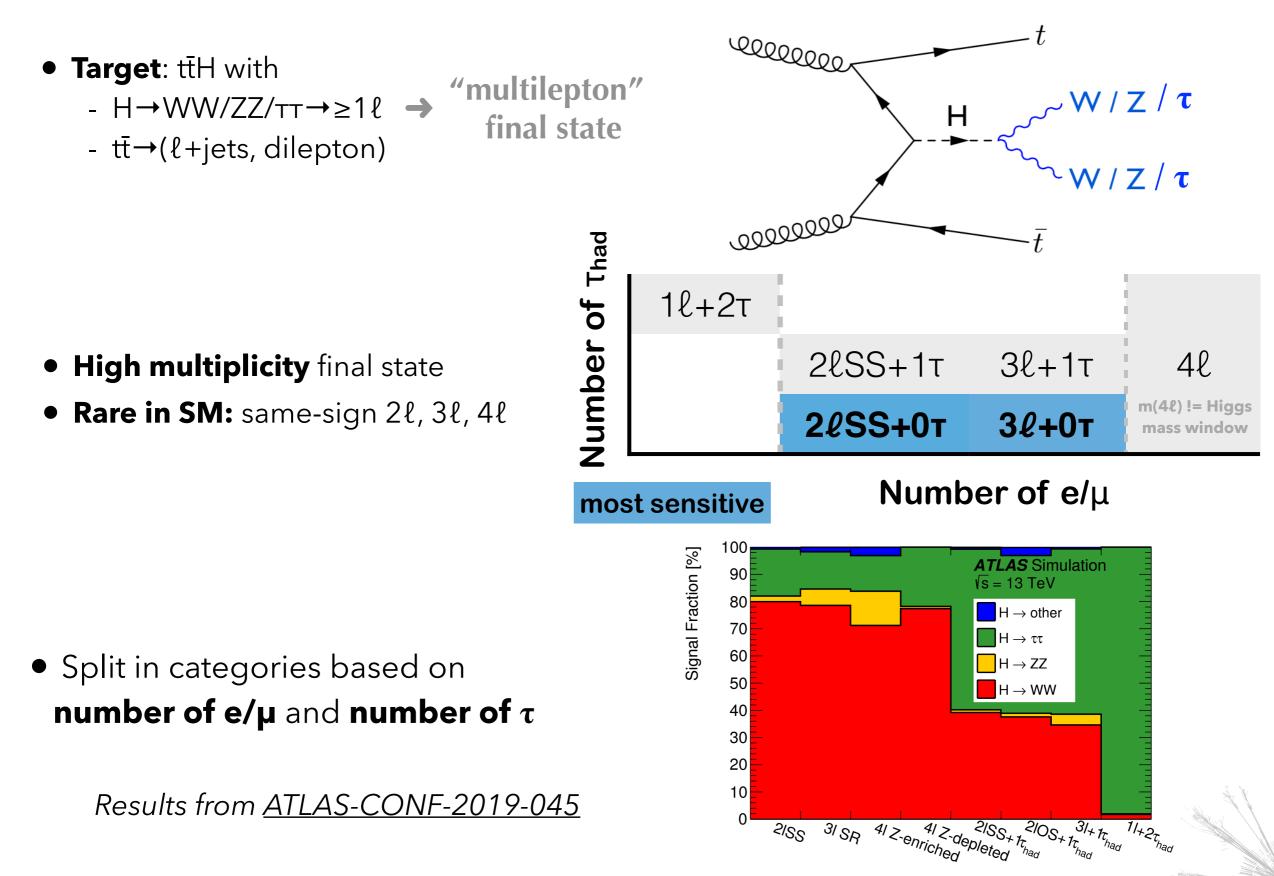

14

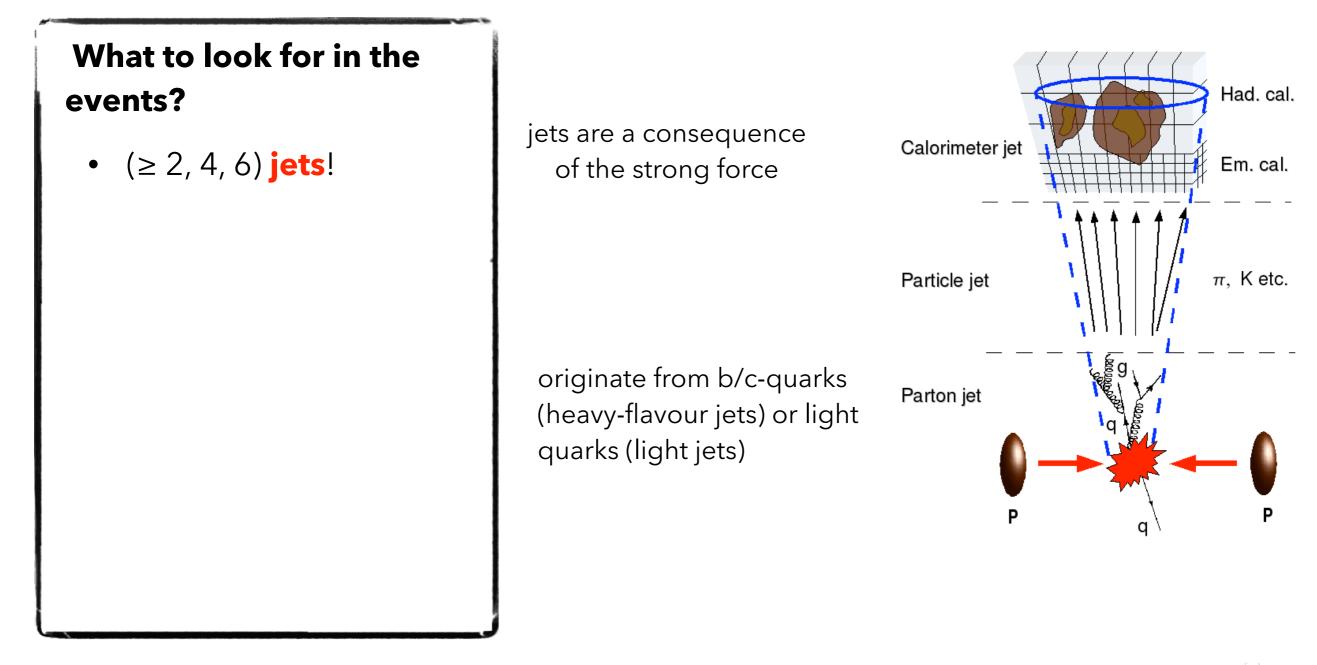
ttH: one of the tiniest rates!



Where to look for ttH production?

- $t\bar{t}H$ production (~500 fb @ 13TeV) is:
 - **two orders** of magnitude smaller than ggF Higgs production
 - three orders of magnitude smaller than tt production
- Look for ttH in final states with distinctive signatures and features
 - Combination of top quark x Higgs boson decay modes

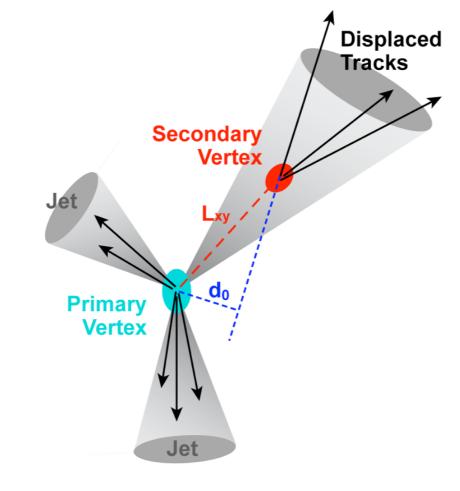

ttH analysis channels



ttH state of the art Run 2

2015-2016 [~36 fb ⁻¹] 2015-2017 [~80 fb ⁻¹] 2015-2018 [~140 fb ⁻¹]	ATLAS EXPERIMENT	CMS
ttH multilepton (H→WW/тт/ZZ)	$\frac{\text{ATLAS-CONF-2019-045}}{\mu_{ttH}} = 0.58 + 0.26_{-0.25}$	$\mu_{ttH} = 0.92 \pm 0.19 \text{ (stat)}^{+0.17}_{-0.13} \text{ (syst)}$
ttH(bb)	$\frac{\text{ATLAS-CONF-2020-058}}{\mu_{ttH} = 0.43^{+0.36} - 0.33}$	$\frac{CMS-PAS-HIG-18-030}{\mu_{ttH}} = 1.15 + 0.15 - 0.15 (stat) + 0.28 - 0.25 (syst)$
ttH(ZZ→4ℓ)	<u>Eur. Phys. J. C 80 (2020) 957</u> (+STXS) μ _{ttH} = 1.7 ^{+1.7} _{-1.2} ± 0.2 ± 0.2	$\frac{arXiv:2103.04956}{\mu_{ttH}} (+STXS) \qquad \qquad$
ttH(yy) Observation!	$\begin{array}{l} \underline{\text{ATLAS-CONF-2020-026}} \ (+ \ \text{STXS}) \\ \mu_{\text{ttH+tH}} = 0.92 \ ^{+0.27} \ _{-0.24} \\ \textbf{4.7} \ \textbf{(5.0)} \ \boldsymbol{\sigma} \ \text{obs} \ (\text{exp}) \\ \underline{\text{PRL 125}} \ (2020) \ 061802} \ (+\text{CP}) \\ \mu_{\text{ttH}} = 1.43 \ ^{+0.33} \ _{-0.31} \ (\text{stat}) \ ^{+0.21} \ _{-0.15} \ (\text{syst}) \\ \textbf{5.2} \ \textbf{(4.4)} \ \boldsymbol{\sigma} \ \text{obs} \ (\text{exp}) \end{array}$	$\begin{array}{l} arXiv:2103.06956 \ (+STXS) \\ \mu_{ttH} = 1.35 \ ^{+0.34} \ ^{-0.28} \\ \hline PRL \ 125 \ (2020) \ 061801 \ (+CP) \\ \mu_{ttH} = 1.38 \ ^{+0.36} \ ^{-0.29} \\ \hline \textbf{6.6} \ \textbf{(4.7)} \ \textbf{\sigma} \ obs \ (exp) \end{array}$
Combination	Phys. Lett. B 784 (2018) 173 (80/fb + 36.1/fb → Observation)	Phys. Rev. Lett. 120 (2018) 231801 → Observation

tīH(multil): analysis strategy


 \geq 2 jets required in all channels

What to look for in the events?

- (≥ 2, 4, 6) **jets**!
- ≥ 2 jets originating from b-quarks (bjets)

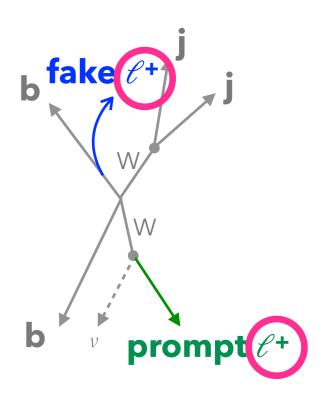
b-quarks live long enough (~ps) to create a secondary vertex at the decay

finding these jets from b-quarks is known as *b-tagging*

 \geq 1 b-jet required in all channels

What to look for in the events?

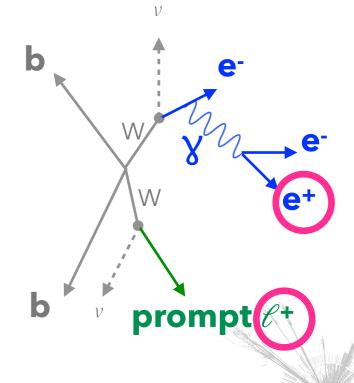
- (≥ 2, 4, 6) **jets**!
- ≥ 2 jets originating from b-quarks (**bjets**)
- charged light leptons (electrons or muons)

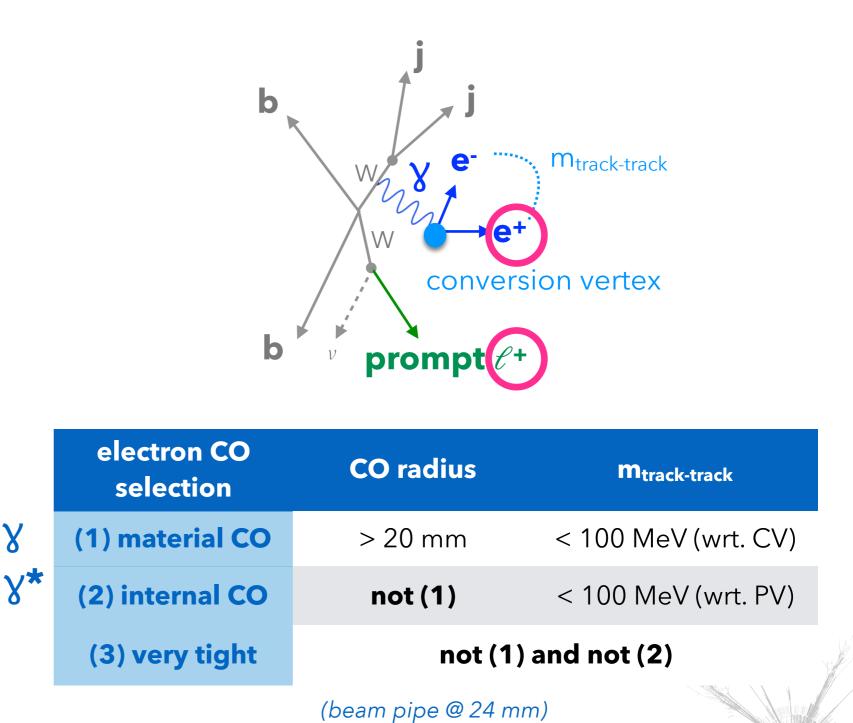

require events triggered by 2 light leptons

very important to have **well isolated** leptons

multivariate lepton isolation to

reject non-prompt leptons based on:


- lepton and overlapping track jets properties
- lepton track/calorimeter isolation variables
 - → Factor *O*(20) rejection for
- leptons originating from bhadrons

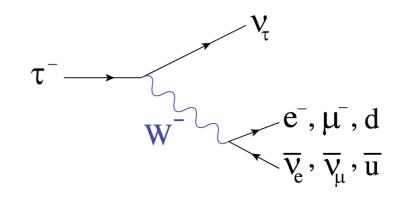

multivariate lepton identification

to reject misidentified charge electrons

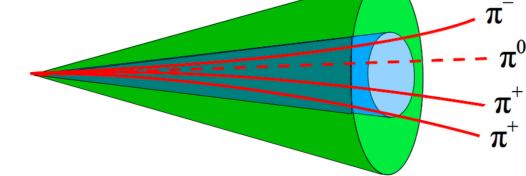
→ Factor Ø(17) background rejection for a 95% signal efficiency

- material and internal electron **conversion** (CO) candidates further suppressed with track invariant masses and conversion radius

What to look for in the events?


- (≥ 2, 4, 6) **jets**!
- ≥ 2 jets originating from b-quarks (**bjets**)
- charged light leptons (**electrons** or muons)

require events triggered by 2 light leptons


What to look for in the events?

- (≥ 2, 4, 6) **jets**!
- ≥ 2 jets originating from b-quarks (**bjets**)
- charged light leptons (electrons or muons)
- hadronically decaying taus

taus can decay into light leptons (e, μ) with BR ~ 35% or quarks with BR ~ 65%

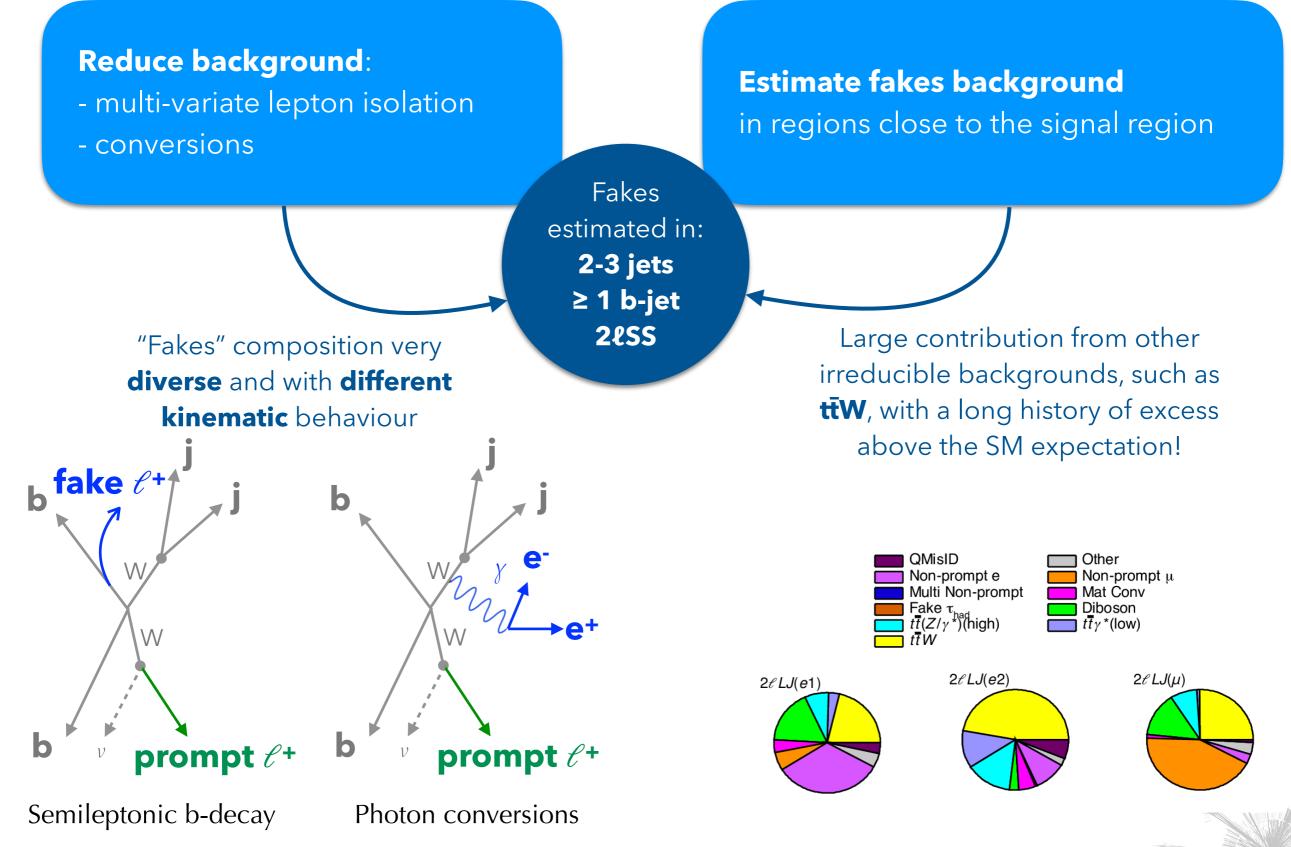
to increase statistics, select hadronically decaying taus: can contain 1 or 3 charged pions (i.e. 1 or 3 *prongs*)

multivariate analysis discriminants to reject jets and electrons faking a tau

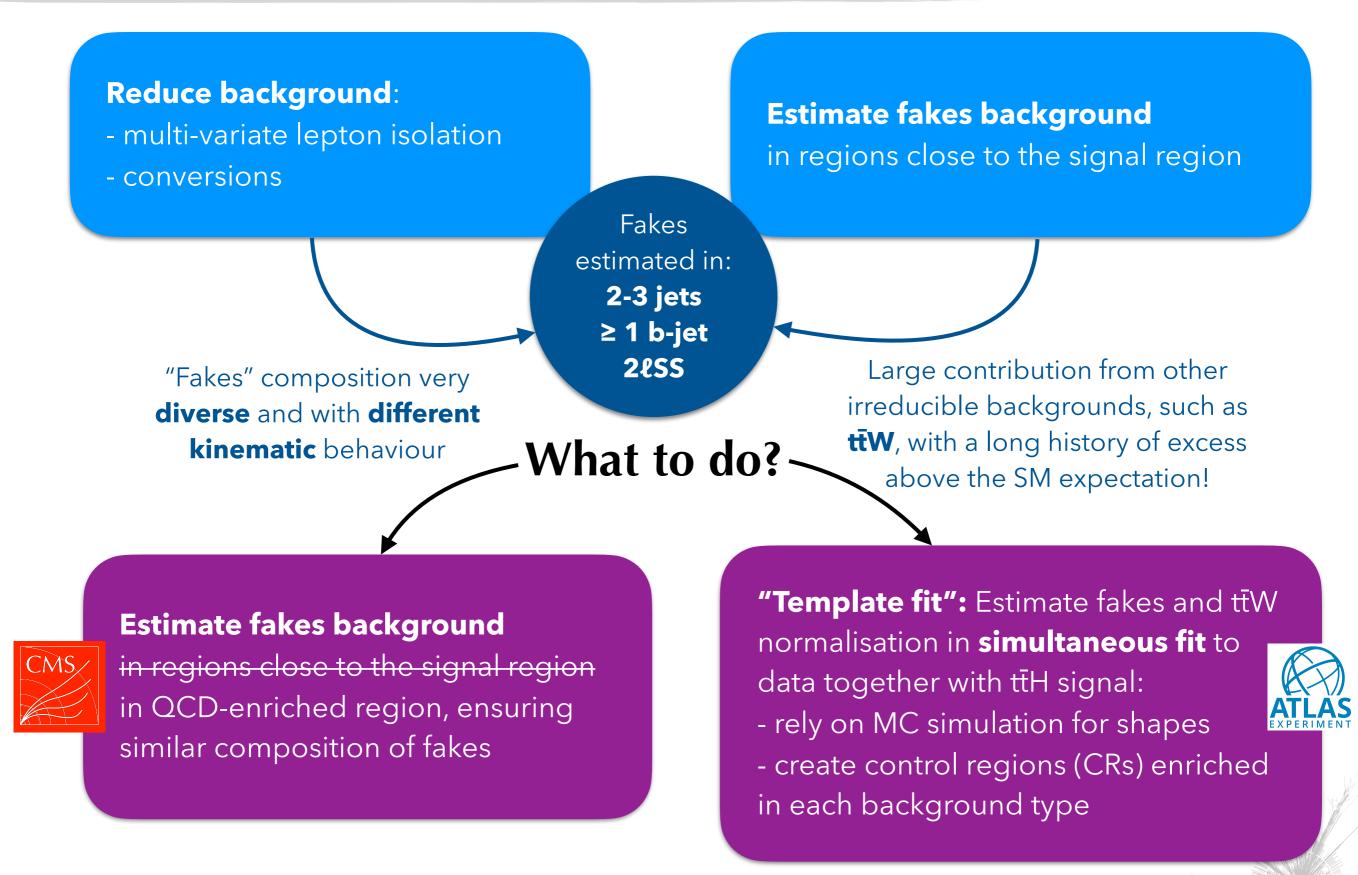
overlap removal wrt. muons and b-jets

ttH(multil): analysis strategy

Object definition

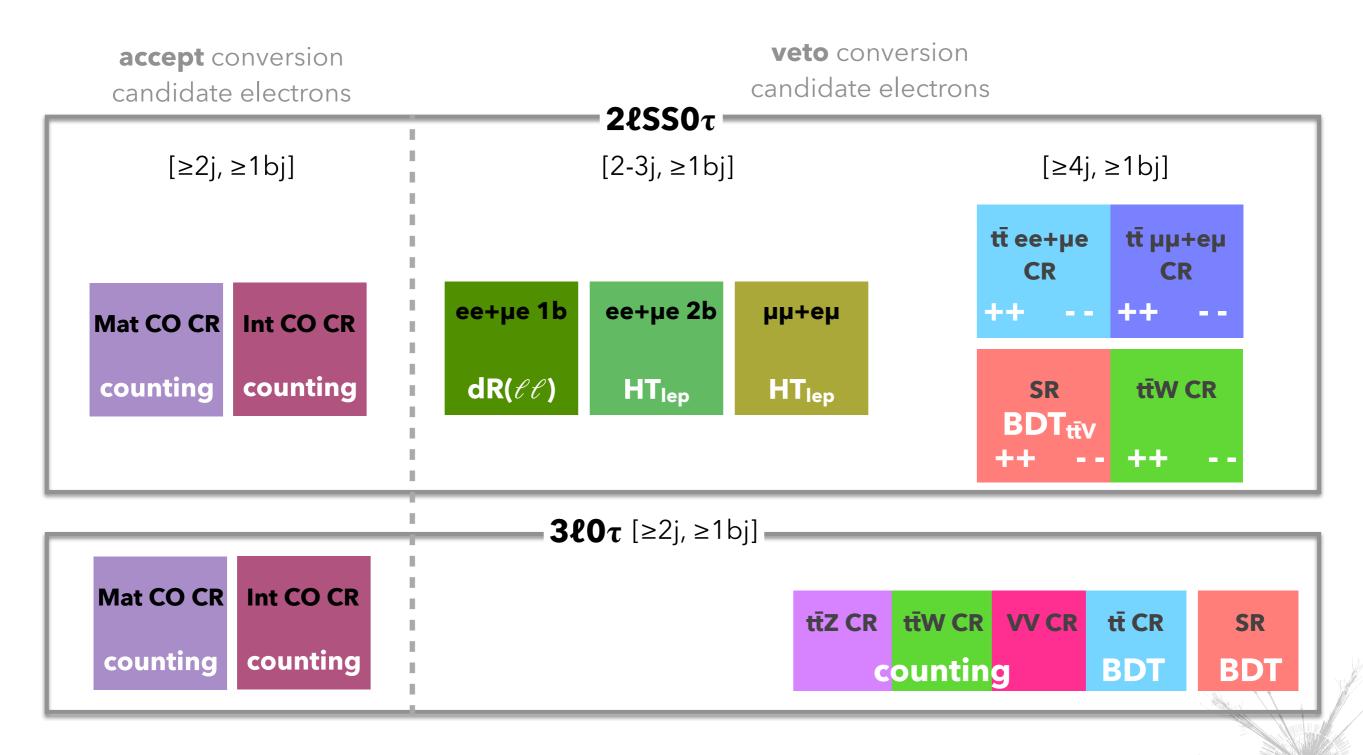

What to look for in the events?

- (≥ 2, 4, 6) **jets**!
- ≥ 2 jets originating from b-quarks (bjets)
- charged light leptons (electrons or muons)
- hadronically decaying taus
- **neutrinos** (missing transverse energy)

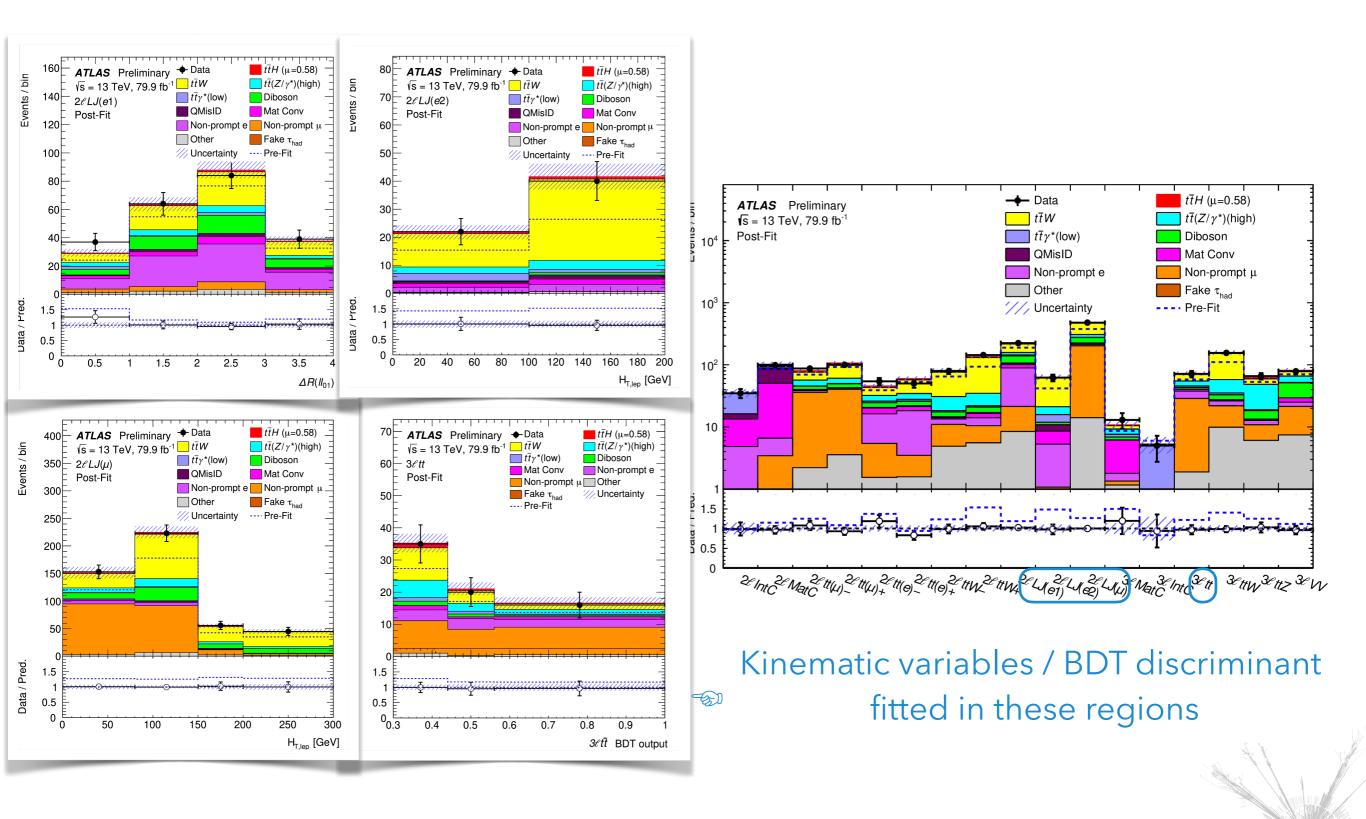

Event selection: MVA strategy

- Signal extraction and background constrain: fit and/or categorise on BDTs (boosted decision tree) that discriminate signal against the main background processes [except in 2ℓ SS+1T and 3ℓ +1T]
 - 2^ℓSSOT: a combination of 2 BDTs (tītH vs. tītV, tītH vs. fakes/tīt) in a 2D space
 - 3ℓ0⊤: a multi-dimensional BDT (tītH vs. tītW vs. fakes/tīt vs. tītZ vs. VV)
 - 4*t* (Z-enriched): tīH vs. tīZ
 - **1ℓ+2т**: tīH vs. tī (with fake т)

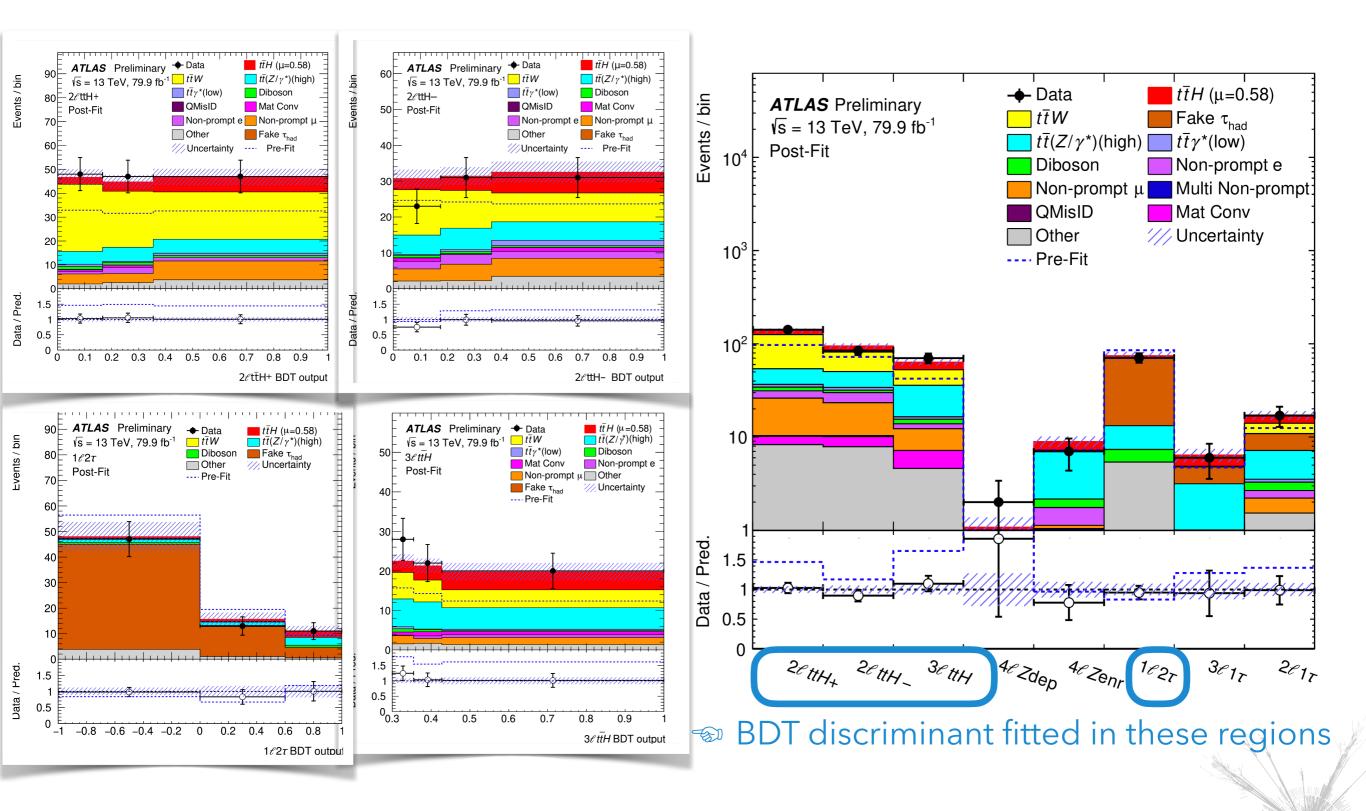
Estimating backgrounds in multi-*ℓ*



Estimating backgrounds in multi-*ℓ*

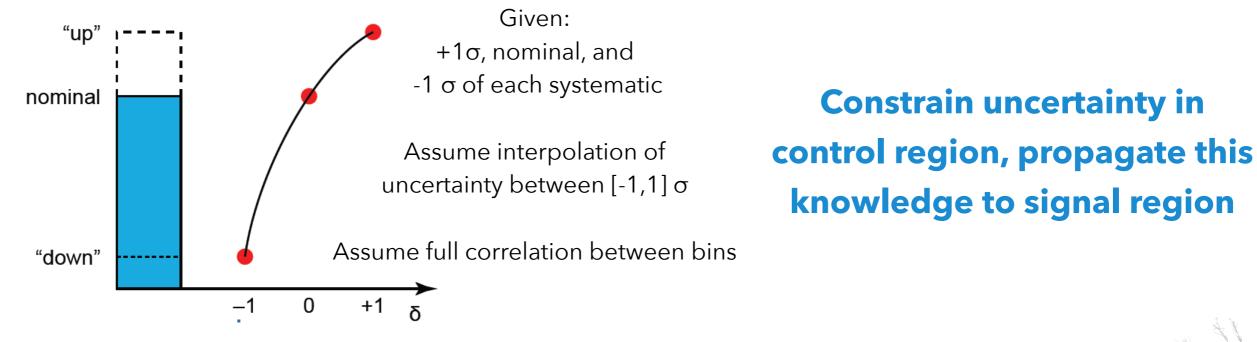


ttH(multil): Template Fit Categories


Categories based on *n***D BDT space or** other kinematic variables, **b-jet multiplicity**, **lepton charge**, and/or **lepton flavour**

ttH(multil): control regions

ttH(multil): signal regions


Profile likelihood fit

• Binned profile likelihood fit

$$L(\boldsymbol{n}, \boldsymbol{\theta}^{0} | \mu_{\text{sig}}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{\text{SR}} \times P_{\text{CR}} \times C_{\text{syst}}$$

= $P(n_{S} | \lambda_{S} (\mu_{\text{sig}}, \text{NF}, \boldsymbol{b}, \boldsymbol{\theta}) \times \prod_{i \in \text{CR}} P(n_{i} | \lambda_{i} (\mu_{\text{sig}}, \text{NF}, \boldsymbol{b}, \boldsymbol{\theta}) \times C_{\text{syst}}(\boldsymbol{\theta}^{0}, \boldsymbol{\theta})$

$$\mu_{t\bar{t}H} = \frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}}$$

- Parameter of interest: signal strength
- Normalisation factors of backgrounds: NF_{ttW}, NF_{HF-e}, ...
- Systematic uncertainties included in the fit as <u>nuisance parameters θ</u>
 - Need sufficiently flexible model of signal and background!

• Find best values for $\mu,$ NF and θ from minimising the -log L

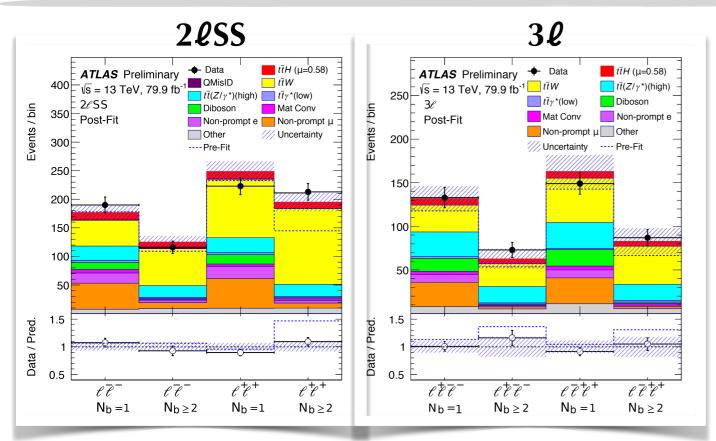
tīH(multil): systematic uncertainties (I)

Systematic uncertainty	Components	Systematic uncertainty	Components
Luminosity (N)	1	$t\bar{t}H$ modelling	
Pileup modelling	1	Renormalisation and factorisation scales	3
Physics objects		Parton shower and hadronisation model	1
Electron	8	Higgs boson branching ratio	4
Muon	11	Shower tune	1
Tau	7	PDF	32
Jet energy scale and resolution	28	$tar{t}W { m modelling}$	
Jet vertex fraction	1	Radiation	1
Jet flavour tagging	17	Generator	1
$E_{\mathrm{T}}^{\mathrm{miss}}$	3	PDF	32
Total (Experimental)	77	Extrapolation	4
Data-driven background estimates		$tar{t}(Z/\gamma^*)$ (high mass) modelling	
Non-prompt light-lepton estimates $(3\ell, 3\ell 1\tau_{had})$	1	Cross section (N)	2
Fake τ_{had} estimates	$\frac{1}{6}$	Generator	1
Electron charge misassignment	$\frac{0}{2}$	Renormalisation and factorisation scales	3
Total (Data-driven reducible background)	9	Shower tune	1
	9	$tar{t} ext{ modelling}$	
Template fit uncertainties		Radiation	1
Material conversions	1	$WZ { m modelling}$	
Internal conversions	1	HF composition (N)	3
HF non-prompt leptons	18	Shower tune	1
LF non-prompt leptons	2	Other background modelling	_
Total (Template fit)	22	Cross section (N)	22
		Total (Signal and background modelling)	120

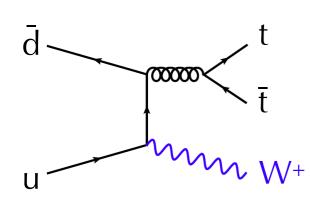
One parameter of interest: µ(tīH)

218 nuisance parameters

Non-p	prompt e
$t\bar{t}\gamma^*(\mathbf{i})$	ow)
$t\overline{t}W$	(x3)!

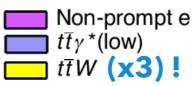

Seven normalisation factors:

Total (Overall)

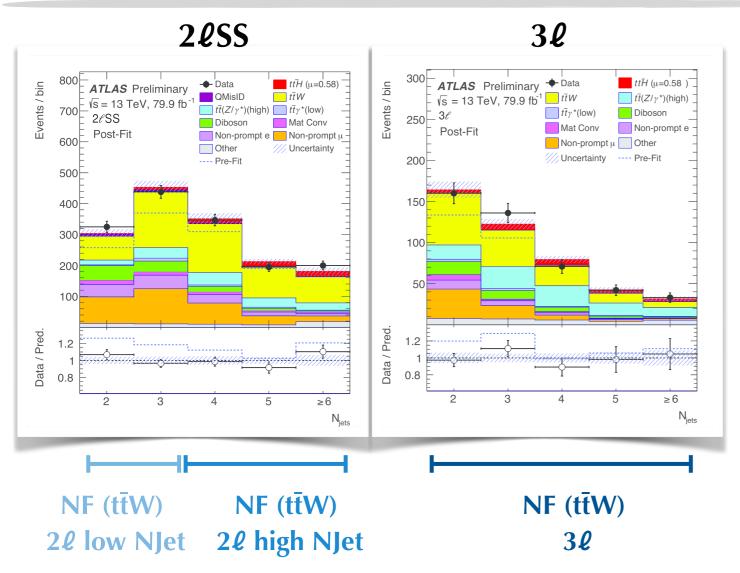

Mon-prompt μ Mat Conv

218

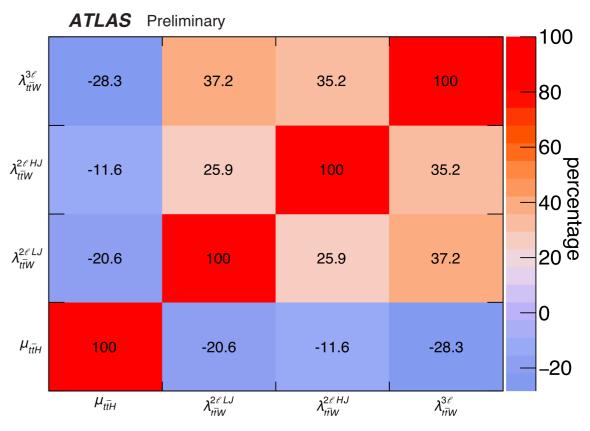
tīH(multil): systematic uncertainties (II)


Additional uncertainties to cover data/MC disagreements as a function of the b-jet multiplicity and ℓ charge for ttW

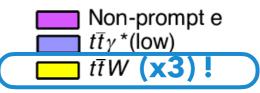
<u>Note</u>: a charge asymmetry **is expected** in the tt̄W production at pp colliders, but **not correlated** to the b-jet multiplicity!


Systematic uncertainty	Components		
$t\bar{t}H$ modelling			
Renormalisation and factorisation scales	3		
Parton shower and hadronisation model	1		
Higgs boson branching ratio	4		
Shower tune	1		
PDF	32		
$tar{t}W ext{ modelling}$			
Radiation	1		
Generator	1		
PDF	32		
Extrapolation	4		
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling			
Cross section (N)	2		
Generator	1		
Renormalisation and factorisation scales	3		
Shower tune	1		
$tar{t} ext{ modelling}$			
Radiation	1		
$WZ { m modelling}$			
HF composition (N)	3		
Shower tune	1		
Other background modelling			
Cross section (N)	22		
Total (Signal and background modelling)	120		
Total (Overall)	218		

Seven normalisation factors:

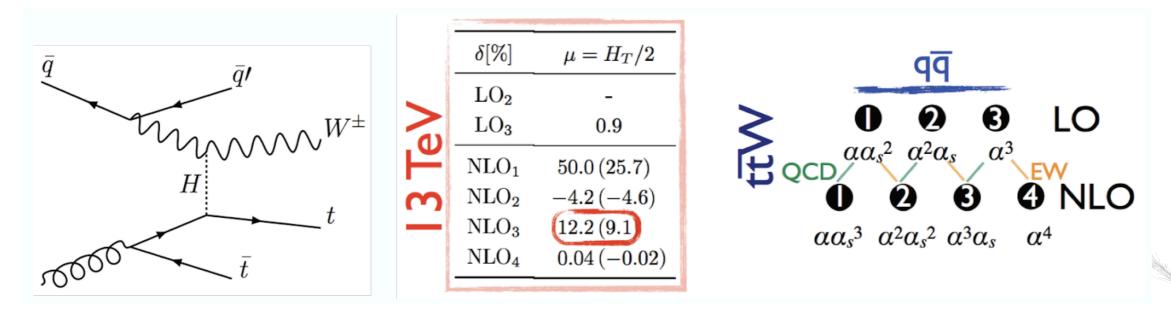

Mon-prompt μ Mat Conv

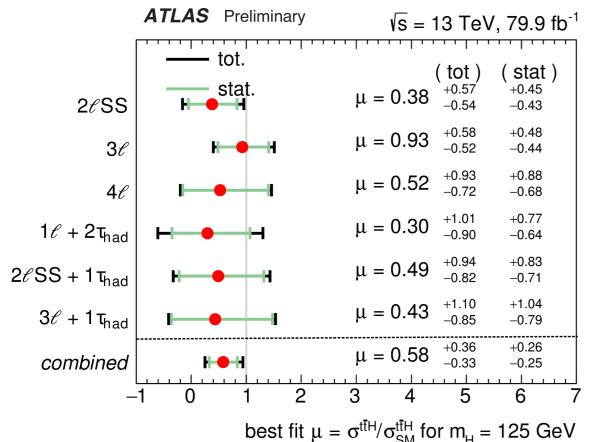
tīH(multil): systematic uncertainties (III)



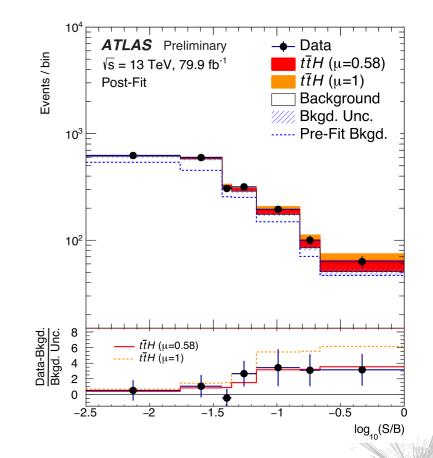
Decorrelated normalisation factors for region where tŧW has lost ≥1j from signal region

Decorrelated normalisation factors between 2ℓ and 3ℓ due to different kinematic behaviours


Seven normalisation factors:


Mon-prompt μ Mat Conv

ttw: higher order QCD and EW corrections


- A normalisation factor of **1.2** applied on top of the YR4 cross section for ttW
- Origin of the correction factor:
 - Factor **1.11** to account for missing QCD corrections in higher order XS
 - ttW+0j@NLO → ttW+0,**1j**@NLO
 - estimated using dedicated samples generated with Sherpa 2.2.1 using the MEPS@NLO
 prescription, and cross-checked with the NLO generator MadGraph5_aMC@NLO 2.2.1 using
 the FxFx prescription
 - Factor 1.09 to account for missing EW corrections
 - [1711.02116] shows "subleading" NLO EWK corrections, not included in YR4 XS, can be large
 - primarily because of the large NLO3 term driven by the ttW+1-jet diagrams with a Higgs boson exchanged in the t-channel

tīH(multil): fit results (I)

• Cross-section extrapolated to the inclusive phase space:

 $\hat{\sigma}(t\bar{t}H) = 294^{+132}_{-127} \text{ (stat.)}^{+94}_{-74} \text{ (exp.)}^{+73}_{-56} \text{ (bkg. th.)}^{+41}_{-39} \text{ (sig. th.) fb}$

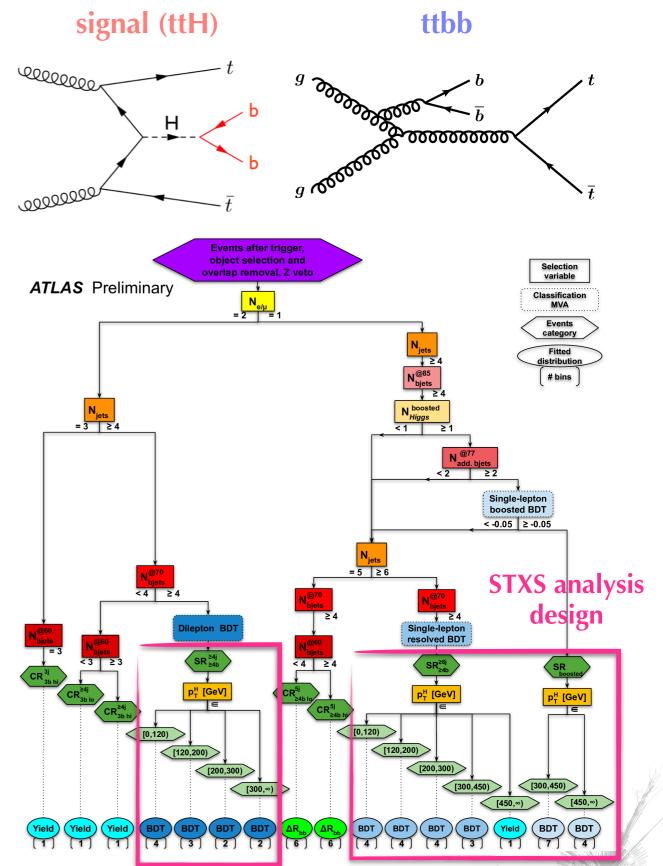
- Observed (expected) significance with respect to background-only hypothesis = 1.8 (3.1) σ
- Compatibility between main and alternative fit = 0.59 σ
- Consistent with the SM

ttH(multil): fit results (II)

Largest (grouped) impact on μ(tt̄H):

- Jet energy scale and resolution still plays a major role
- The largest modelling systematic uncertainties come from the two and the two delling systematic uncertainties come from the two dellings are the two dell
- Fakes impact is reducing its size with more statistics!
- No major constraints or pulls of nuisance parameters
 - Exception: pull from ttw scale variation and constraint from ttw charge extrapolation uncertainties

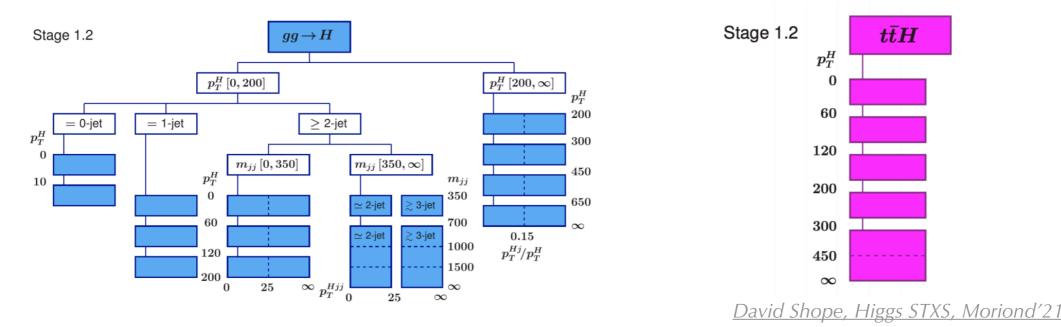
			Pre-fit impact on μ :	
Uncertainty source	Δ	$\Delta \hat{\mu}$	$\Box \theta = \hat{\theta} + \Delta \theta \qquad \Box \theta = \hat{\theta} - \Delta \theta$	
Jet energy scale and resolution	+0.13	-0.13	Post-fit impact on μ :	$\Delta \mu$
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling	+0.09	-0.09	$\theta = \hat{\theta} + \Delta \hat{\theta} \qquad \qquad \theta = \hat{\theta} - \Delta \hat{\theta}$	-0.15 -0.1 -0.05 0 0.05 0.1 0.15
$t\bar{t}W$ modelling (radiation, generator, PDF)	+0.08	-0.08	— ● Pull: (θ̂-θ ₀)/Δθ	
Fake $\tau_{\rm had}$ background estimate	+0.07	-0.07	Norm. Factor	ATLAS Preliminary
$t\bar{t}W$ modelling (extrapolation)	+0.05	-0.05		√s = 13 TeV, 79.9 fb ⁻¹
$t\bar{t}H$ cross section	+0.05	-0.05		
Simulation sample size	+0.05	-0.05	$t\bar{t}W$ norm. factor: 3ℓ channel	
$t\bar{t}H$ modelling	+0.04	-0.04	Jet energy scale: η intercalib. NP I	••••••••••••••••••••••••••••••••••••••
Other background modelling	+0.04	-0.04	$t\bar{t}Z$ cross section: scale variations	
Jet flavour tagging and τ_{had} identification	+0.04	-0.04	$t\bar{t}W$ modelling: scale variations	
Other experimental uncertainties	+0.03	-0.03	$t\bar{t}W$ norm. factor: 2ℓ SS channel, 2-3 jets	
Luminosity	+0.03	-0.03	Fake τ_{had} bkg. stat: $1\ell 2\tau$ channel	
Diboson modelling	+0.01	-0.01	$t\bar{t}H$ cross section: scale variations	
$t\bar{t}\gamma^*$ (low mass) modelling	+0.01	-0.01	Jet energy scale: pileup	
Charge misassignment	+0.01	-0.01	$t\bar{t}W$ modelling: charge extrapolation	
Template fit (non-prompt leptons)	+0.01	-0.01	$t\bar{t}W$ norm. factor: 2ℓ SS channel, ≥ 4 jets	
Total systematic uncertainty	+0.25	-0.22		
Intrinsic statistical uncertainty	+0.23	-0.22	Top rare decay cross-section	
$t\bar{t}W$ normalisation factors	+0.10	-0.10	Jet energy scale: flavour response	
Non-prompt leptons normalisation factors (HF, material conversions)	+0.05	-0.05	$t\bar{t}H$ modelling: parton shower	
Total statistical uncertainty	+0.26	-0.25	$t\bar{t}W$ modelling: alternative generator	
Total uncertainty	+0.36	-0.33	4-top cross section	
			-	-2 -1.5 -1 -0.5 0 0.5 1 1.5


tīH(bb): analysis strategy

tt+HF (≥1b, ≥1c) background
 tt+≥1b: ttbb PowhegBoxRes+Pythia8:

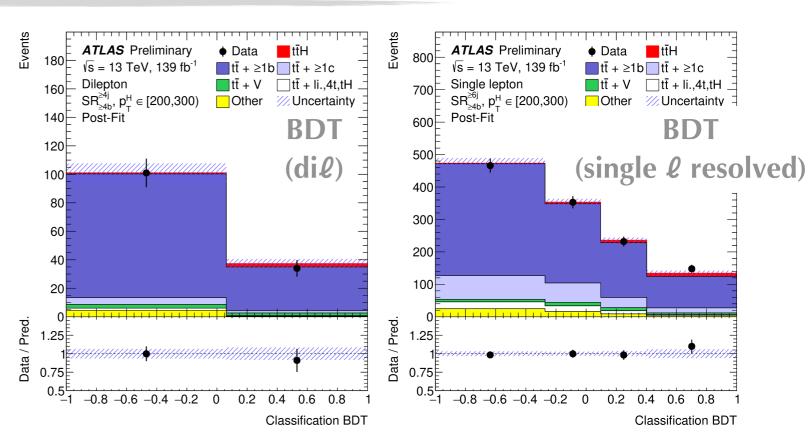
Biggest challenge: good modelling of the

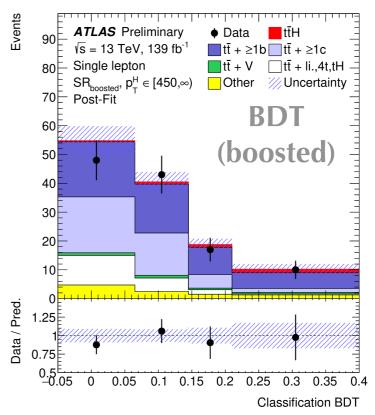
- @NLO 4-flavour scheme
- tī+≥1c and tī+light: tī @NLO 5-flavour scheme sample
- Channel categorisation based on
 - Number of ℓ (1 or 2 opposite-sign)
 - Number of jets
 - Requirements on the b-tagging discriminant (based on 4 calibrated working points: 60, 70, 77, and 85% btagging efficiencies)
 - Resolved or boosted, for single lepton channel
 - Reconstructed p_T^{Higgs} categories


Simplified Template Cross Section (STXS)

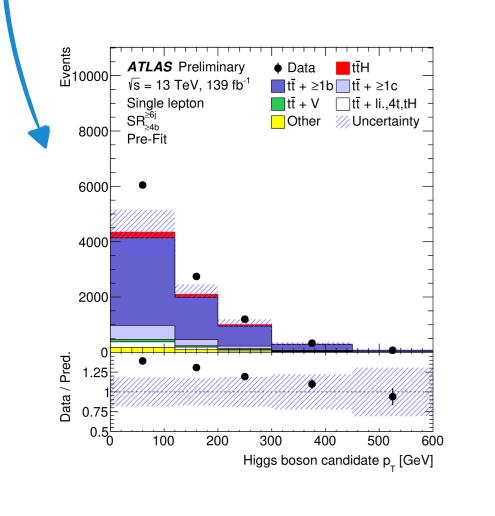
- Measure production modes separately, categorising each into bins of key (truth) quantities (pT^H, Njets, m_{jj},...)
 - Chosen as most sensitive variables to theory predictions / signal sensitivity / new physics
 - Different stages (e.g. stage 0, stage 1, stage 1.2) with varying degrees of granularity
 - Decay mode agnostic: well-suited for combinations

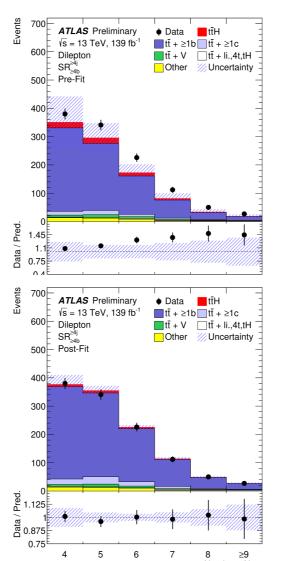
• How to design an STXS analysis?

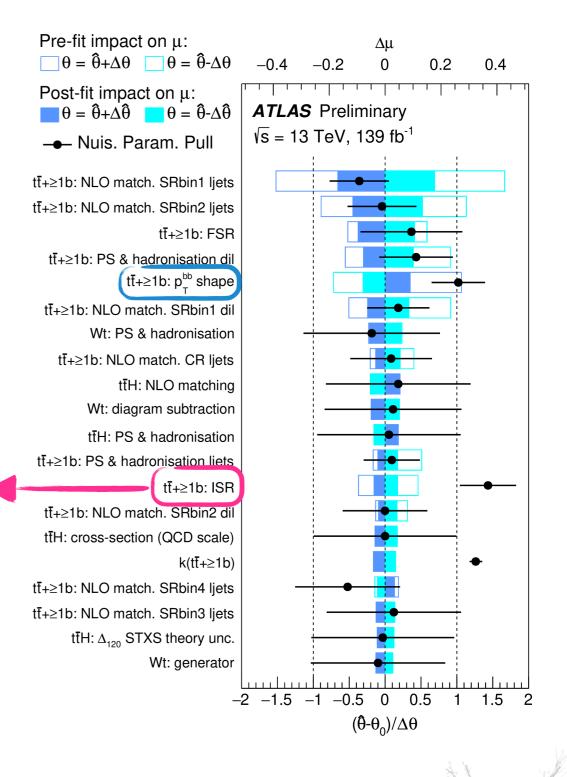

- How are events categorised?
 - Reconstructed quantities as proxy for truth quantities or multivariate classifier
- How many / which bins to target?


tīH(bb): MVA discriminants

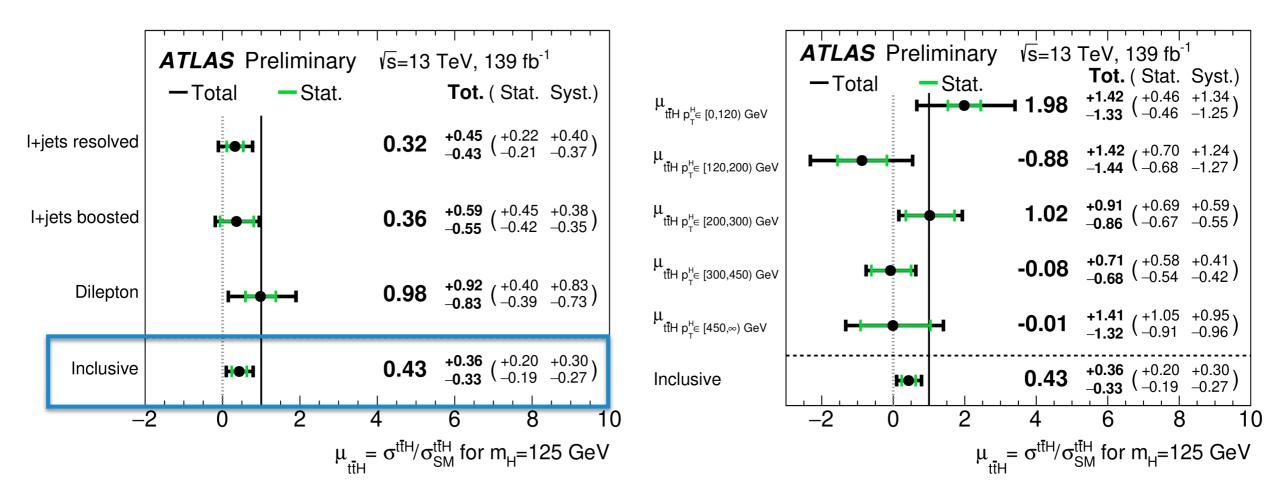
- **MVA analysis** needed to discriminate signal from the overwhelming background
 - Input variables of
 classification BDT: kinematic
 variables, reconstruction BDTs
 (resolved provides reco
 variables such as p_T^H or m_{bb}),
 likelihood, and discrete
 btagging discriminants


Boosted category

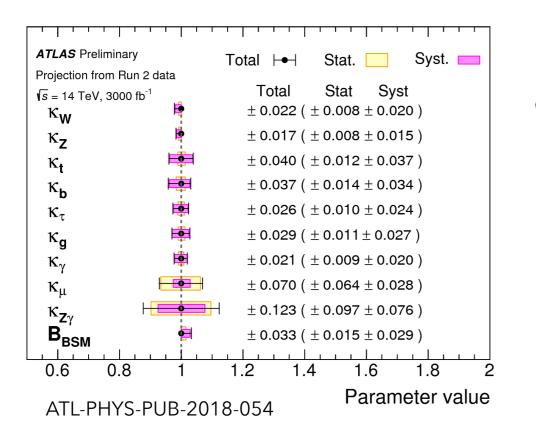

- RC jet: small-R jets reclustered with antik_t algorithm with radius 1.0
- DNN: probability that an RC jet originates from Higgs [P(H)], top [P(top)] or multijet production [P(multijet)]
- Event w/ boosted Higgs candidate:
 - P(H) > P(top) and P(H) > P(multijet)



tīH(bb): modelling uncertainties


- Generator: Powheg+Pythia8 vs aMC@NLO+Pythia8 (5FS)
- Parton shower: Powheg+Pythia8 vs Powheg+Herwig7
- ISR (+scale), FSR, $t\bar{t}+1b$ vs $t\bar{t}+\ge 2b$ fraction uncertainties
- p_T^{bb} shape uncertainty (ad-hoc)
- Free-floating normalisation tī+≥1b
- Nuisance parameter (100% prior) tī+≥1c normalisation

tīH(bb): results

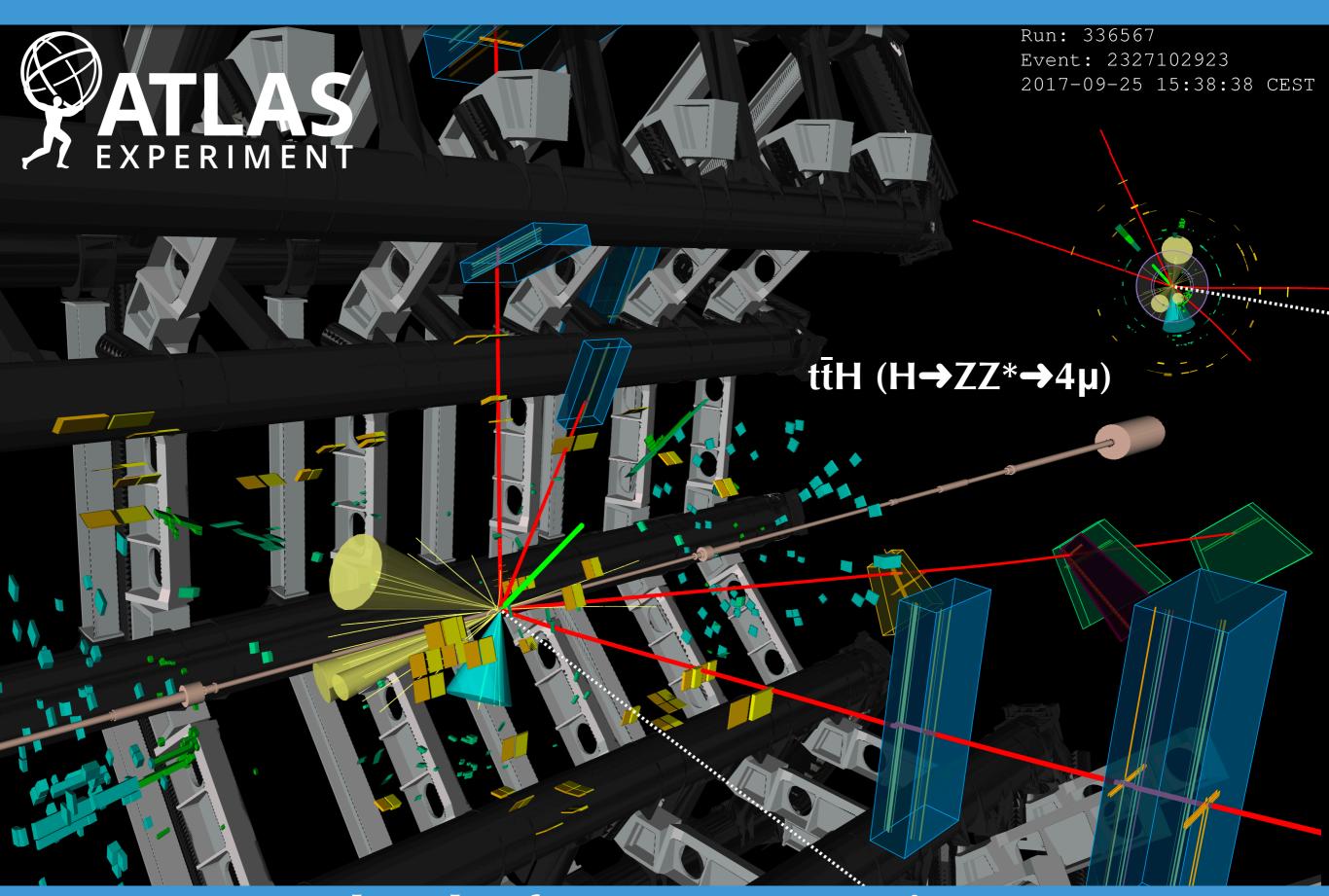


• NF(tī+≥1b) = 1.26 ± 0.09

- **Dominated by systematic** uncertainties
- Most relevant uncertainties from $t\bar{t}+\geq 1b$ background modelling ($\Delta \mu/\mu = 60\%$)
- Significance w.r.t background-only hypothesis: **1.3 (3.0σ)**
- First ttH(bb) STXS measurement
 - Complements $t\bar{t}H(\gamma\gamma)$ STXS measurements **at high p_TH**

The future @ the LHC

- Analyse full Run-2 dataset!
- Preparing for Run 3: 13→14 TeV (?), double luminosity
- HL-LHC: 10x more luminosity, explore less accessible processes such as di-Higgs (self-coupling of Higgs boson)

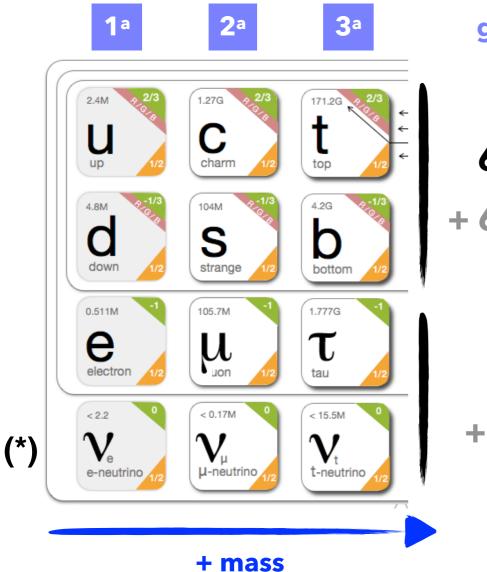


LHC/ HL-LHC Plan (last update January 2021)

- Expect to measure the top Yukawa coupling (modifier) κ_t at 4% level at the end of HL-LHC
 - Systematics-limited!

Stay tuned for upcoming results!

Thanks for your attention!


Back-up slides

Why particle colliders?

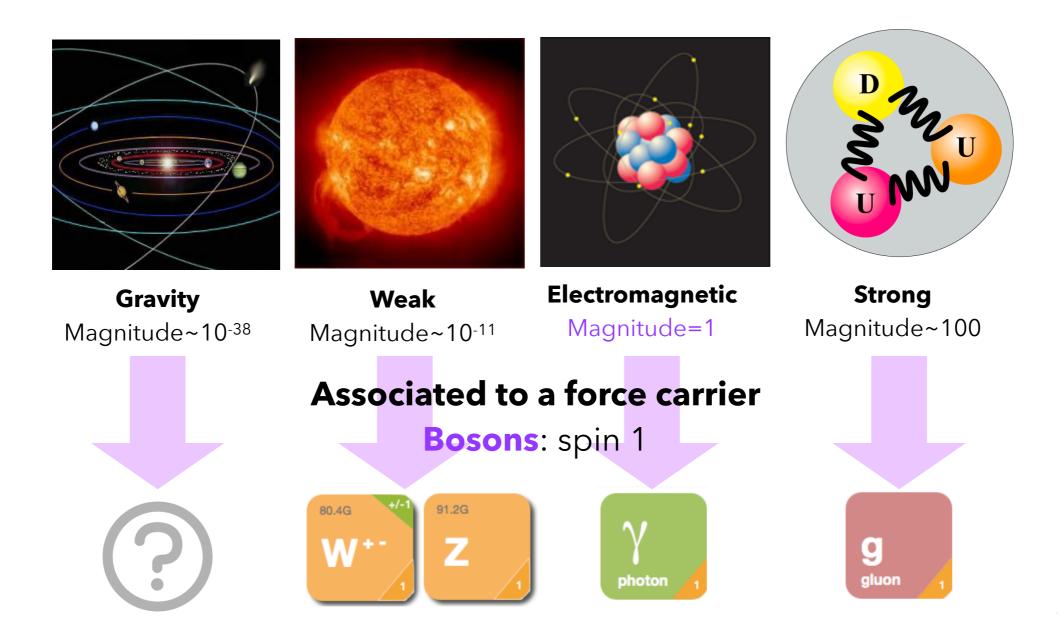
- To understand the fundamental description of Nature
- Best Model so far: The Standard Model of Particle Physics

Fermions: spin 1/2

generation

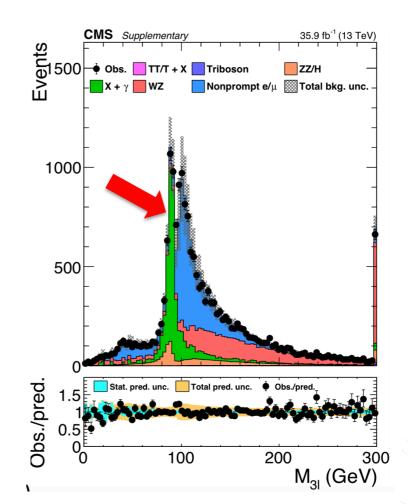
6 quarks

+ 6 anti-quarks

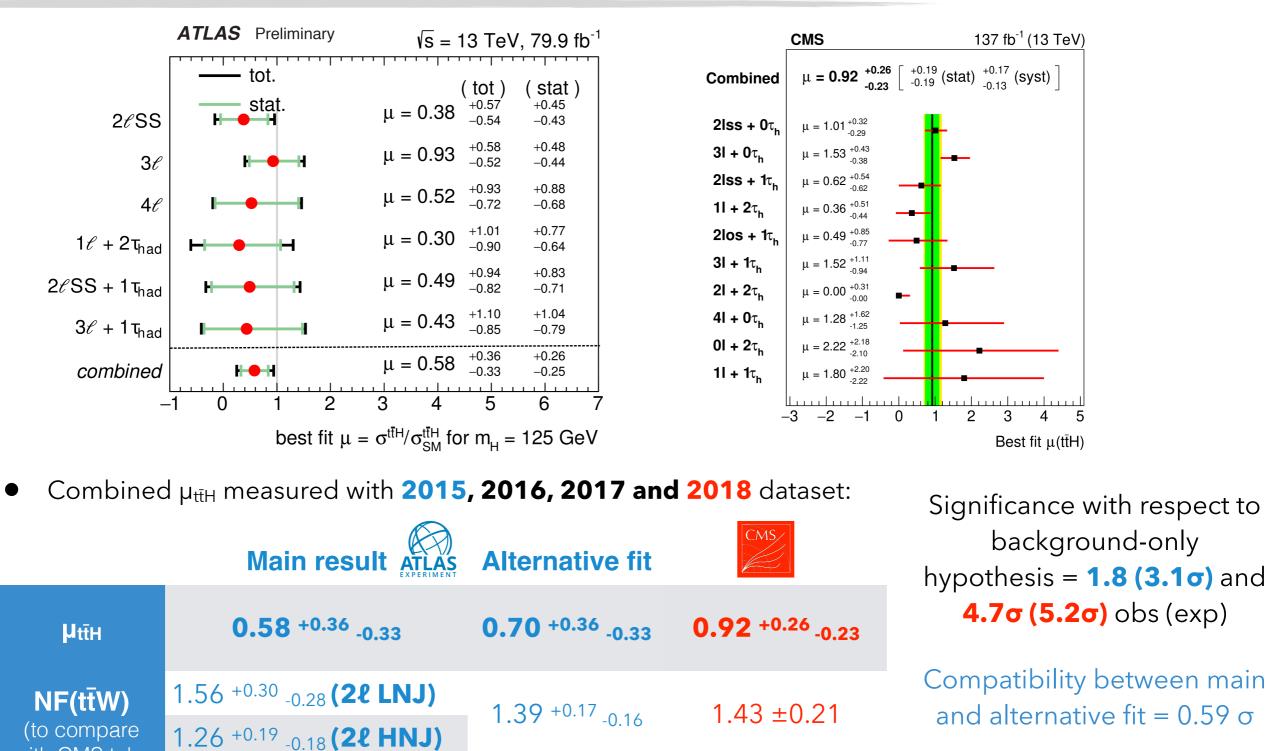

6 leptons

+ 6 anti-leptons

(*) <u>Disclaimer</u>: Still open questions from the neutrino sector (do not know yet if neutrinos are Dirac or Majorana particles, neutrinos mass hierarchy not yet established, ...) → Likely requires SM extension


Why particle colliders?

- To understand the fundamental description of Nature
- Best Model so far: The Standard Model of Particle Physics



ATLAS · CMS comparison: strategy

- **Similar** analysis strategy:
 - lepton-based BDT isolation suppressing background with & from semi-leptonic bdecays
 - general categorisation: based on number of e/µ and auhad
 - SR optimisation: based on BDTs against main backgrounds
 - simultaneously measure normalisation of tTW in the fit
 - CMS has dedicated CRs for ttw, ttZ (on-shell), and diboson backgrounds
- **Different** techniques to estimate fakes:
 - CMS estimates fakes from data in a QCD control regions with relaxed object ID
 - → Contamination from other processes (<10%) subtracted [tt̄W contamination is marginal]
 - → electron from conversions very well modelled by MC in CMS
 - → loose lepton definition tuned to control potential flavour dependence of the fake rate (only light and heavy-flavour non-prompt leptons)

ATLAS · CMS comparison: results

[SM ref: 727 fb]

[SM ref: 650 fb]

 1.03 ± 0.14

tīW measured consistently higher than SM in both experiments!

Probing top and Higgs in multil and multib events | Zürich 12-04-21 | Tamara Vazquez Schröder (CERN)

with CMS take

~1.1xATLAS)

NF(tīZ)

1.68 +0.30 -0.28 (32)

tīH (multil): object definition

• Several "Loose" and "Tight" lepton definitions to optimise the event selection in each multilepton channel

		e			μ		
	L	L*	Т	T*	L	L*	T/T^*
Identification	Lo	ose	T	ight	Loose Med		Medium
Isolation	No		Yes		No		Yes
Non-prompt lepton veto	No		Yes		No		Yes
Charge misidentification veto	N	0	Ŋ	Yes	N/A		
Material/internal conversion veto		No		Yes		N/	/A
Lepton $ \eta $	<	< 2.47 < 2 < 2		<	2.5		
$ d_0 /\sigma_{d_0}$	< 5 < 3		3				
$ z_0\sin heta $	< 0.5 mm						

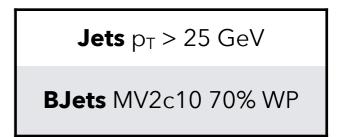
Thad Medium BDT ID to reject jets

(1M, 1T in 1ℓ+2⊤)

 $p_T > 25 \text{ GeV}$

BDT to reject el faking T

 τ - μ overlap removal

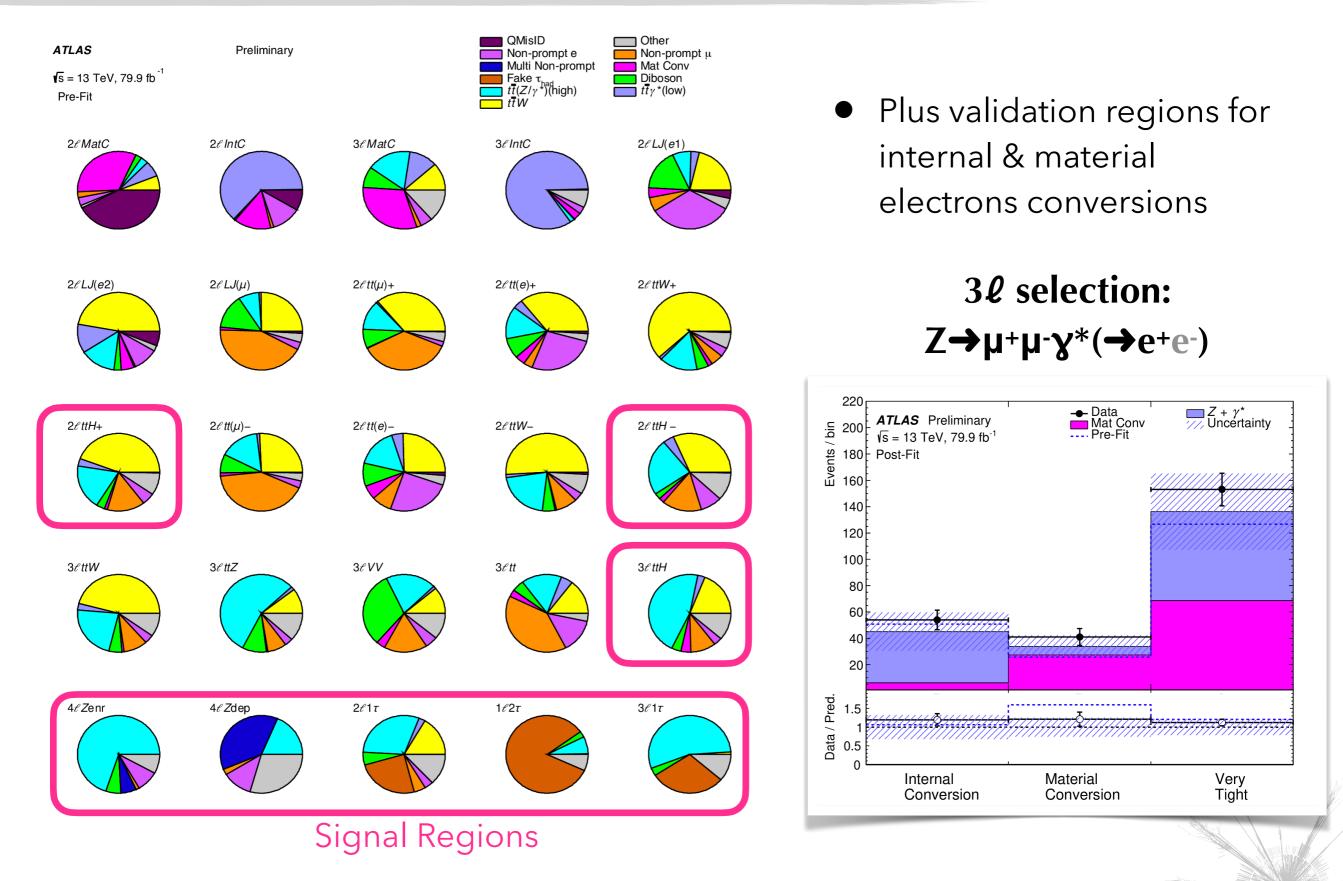

b-jet veto

 τ_{had} vertex is PV

L = Loose

 $L^* = +$ Loose isolated

T = Tight (PLI isolated + QMisID MVA veto) $T^* = + QMisID MVA veto (el only)$



ttH (multil): event selection

Channel	Selection criteria
Common	$N_{\rm jets} \ge 2$ and $N_{b-\rm jets} \ge 1$
$2\ell SS$	Two same-charge (SS) very tight (T*) leptons, $p_{\rm T} > 20 \text{ GeV}$
	No $\tau_{\rm had}$ candidates
	$m(\ell^+\ell^-) > 12$ GeV for all SF pairs
	13 categories : enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}$, mat. conv., int. conv.,
	split by lepton flavour, charge, jet and b -jet multiplicity
3ℓ	Three loose (L) leptons with $p_{\rm T} > 10$ GeV; sum of light-lepton charges = ± 1
	Two SS very tight (T*) leptons, $p_{\rm T} > 15 \text{ GeV}$
	One OS (w.r.t the SS pair) loose-isolated (L*) lepton, $p_{\rm T} > 10 \text{ GeV}$
	No $\tau_{\rm had}$ candidates
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOS pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
	7 categories: enriched with ttH , ttW , ttZ , VV , $t\bar{t}$, mat. conv, int. conv
4ℓ	Four loose-isolated (L*) leptons; sum of light lepton charges $= 0$
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOS pairs
	$m(4\ell) < 115 \text{ GeV or } m(4\ell) > 130 \text{ GeV}$
	2 categories: Zenr (Z-enriched;1 or 2 SFOS pairs) or Zdep (Z-depleted; 0 SFOS pairs)
$1\ell 2 au_{ m had}$	One tight (T) lepton, $p_{\rm T} > 27 \text{ GeV}$
	Two OS τ_{had} candidates
	At least one tight τ_{had} candidate
	$N_{\rm jets} \ge 3$
$2\ell SS1\tau_{had}$	$2\ell SS$ selection, except: One medium τ_{had} candidate
	$N_{\rm jets} \ge 4$
$3\ell 1 au_{ m had}$	3ℓ selection, except:
	One medium τ_{had} candidate, of opposite charge to the total charge of the light leptons
	Two SS tight (T) leptons

tīH (multil): Background composition

ttH (multil): Cut&Count analysis

				F		
Channel	Selection criteria		≡.	ATLAS Preliminary		tŦ
Common	$N_{\text{iets}} \ge 2 \text{ and } N_{b-\text{iets}} \ge 1$		= <u>u</u> <u>u</u> <u>u</u> <u>u</u>	√s = 13 TeV, 79.9 fb ⁻¹		tŦ
2ℓSS	Two SS very tight (T*) lep	tons, $p_{\rm T} > 20 {\rm GeV}$	Events /	E 21 + 31	$t\bar{t}\gamma^*(low)$	D
	No τ_{had} candidates	· 1 •	en	Post-Fit	QMisID	Μ
	$m(\ell_0 \ell_1) > 12 \text{ GeV}$		<u>></u> Ш		Non-prompt e	
	12 categories based on the	e following criteria:		T		
	• Number of jets: $N_{jets} = 4$	or $N_{\text{iets}} > 4$	10 ³	-	Other	U
	• Number of b-tagged jets:	$N_{b-\text{jets}} = 1 \text{ or } N_{b-\text{jets}} > 1$			Pre-Fit	
	• Flavour of SS leptons: ee	r , $\mu\mu$ or opposite flavour (OF)			H B -1	
3ℓ	Three light (L) leptons wit	h $p_{\rm T} > 10$ GeV; sum of light-lepton charges = ± 1	_	++==		
	Two SS very tight (T*) lep	tons, $p_{\rm T} > 15 {\rm GeV}$	10 ²			
	One OS (w.r.t the SS pair)	loose-isolated (L*) lepton, $p_{\rm T} > 10 \text{ GeV}$	10			
	No τ_{had} candidates					
	$m(\ell^+\ell^-) > 12$ GeV for all s	SFOS pairs				1
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$	GeV				
	12 categories based on the	e following criteria:	10			
	LjZPeak $3 \le N_{je}$	$t_{\rm s} \leq 5$; 1 SFOS pair, $m(\ell^+\ell^-) \in Z_{\rm win}$	_			
	HjZPeak $N_{jets} \ge$	6; 1 SFOS pair, $m(\ell^+\ell^-) \in Z_{win}$				
	LjHmZenr $3 \le N_{je}$	$t_{\rm s} \leq 5; m(\ell_0 \ell_1) > 70 \text{ GeV}; 1 \text{ SFOS pair, } m(\ell^+ \ell^-) \notin Z_{\rm win}$				
	HjHmZenr $N_{jets} \ge$	6; $m(\ell_0 \ell_1) > 70$ GeV; 1 SFOS pair, $m(\ell^+ \ell^-) \notin Z_{\text{win}}$	1			
	LjHmZdep_pp $3 \le N_{je}$	$t_{\rm s} \leq 5$; $m(\ell_0 \ell_1) > 70$ GeV; 0 SFOS pair; ℓ_1 and ℓ_2 positively charged			· · · · · · · · · · · · · · · · · · ·	_
		$t_{\rm s} \leq 5$; $m(\ell_0 \ell_1) > 70$ GeV; 0 SFOS pair; ℓ_1 and ℓ_2 negatively charged	<u>0</u> 1.5	ana de C		
	LjLm1bZenr $3 \le N_{je}$	$t_{ts} \le 5$; $N_{b-\text{jets}} = 1$; $m(\ell_0 \ell_1) < 70$ GeV; 1 SFOS pair, $m(\ell^+ \ell^-) \notin Z_{\text{win}}$		and Marchan and Alar	Children Children and Children of the	1
	LjLm1bZdep $3 \le N_{je}$	$t_{s} \le 5$; $N_{b-jets} = 1$; $m(\ell_0 \ell_1) < 70$ GeV; 0 SFOS pair	Data / Pred. 2.0	101010601/120101211/1610101	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ŕq
		$t_{ts} \le 5$; $N_{b-\text{jets}} \ge 2$; $m(\ell_0 \ell_1) < 70$ GeV; 1 SFOS pair, $m(\ell^+ \ell^-) \notin Z_{\text{win}}$	0.5 ar		1	
		$l_{ts} \leq 5$; $N_{b-jets} \geq 2$; $m(\ell_0 \ell_1) < 70$ GeV; 0 SFOS pair				
		6; $m(\ell_0\ell_1) < 70 \text{ GeV}$; 1 SFOS pair, $m(\ell^+\ell^-) \notin Z_{\text{win}}$,	_
	HjLmZdep $N_{jets} \ge$	6; $m(\ell_0 \ell_1) < 70 \text{ GeV}$; 0 SFOS pair	_	$(e^{1})_{L}$ $(\mu)_{L}$ $(\mu)_{L}$ $(\mu)_{L}$ $(e^{2})_{L}$ $(e^{2})_{L}$ $(1b5)_{L}$ (1b5	11b4 11b4 11b4 11b4 11b4 11b4 11b4	Zen
$Z_{\text{min}} = [$	M_{z} + 10 GeV], where M_{z} d	lenotes the Z-boson pole mass.	_			102
$z_{\rm win} - 1$	$m_{Z} = 10$ GeV], where m_{Z} u	enous the 2 coson pore mass.		2/ LJ 2/ LJ 2/ LJ 3/ N 3/ N 3/ N 2/ LJ 2/	LjHmZdep_Ljtact	Ē
				26 26 24 26 25 26 24 26 26 25		3
				6 6		

$\hat{\mu} = 0.67^{+0.44}_{-0.41}$ and $\hat{\mu} = 0.43^{+0.66}_{-0.65}$ for the 2*l*SS and 3*l* categories (nominal) (Cut&Count)

Probing top and Higgs in multil and multib events | Zürich 12-04-21 | Tamara Vazquez Schröder (CERN)

tTH

 $t\overline{t}(Z/\gamma^*)$ (high)

Diboson

Uncertainty

Mat Conv

📃 Non-prompt μ

tīH (multil): other checks

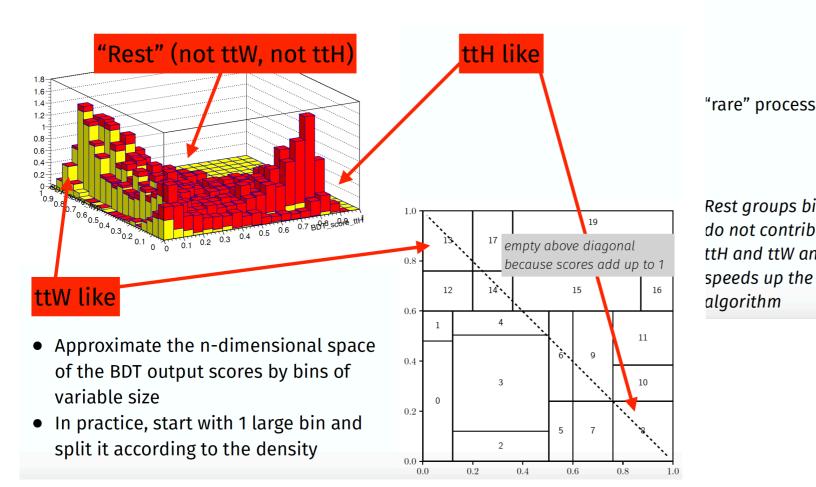
• Cross-check across years

2015+2016 $\hat{\mu} = 0.68^{+0.50}_{-0.45}$ $\hat{\mu} = 0.52^{+0.45}_{-0.40}$

tŧW NF also found to be high in both datasets

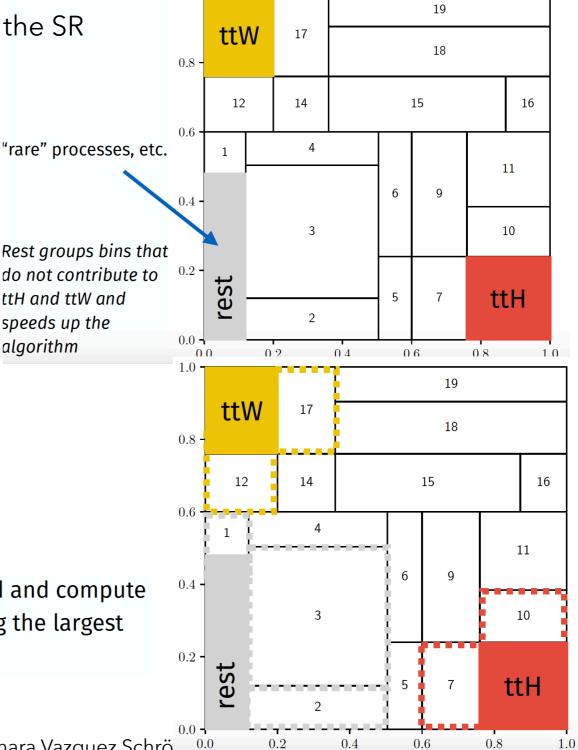
• Comparison wrt. 36/fb tt̄H publication [Phys. Rev. D 97 (2018) 072003]

current fit model + tt̄W fixed to SM and no extrapolation uncertainties $\rightarrow \mu$ consistent with previous result


• Comparison wrt. 36/fb ttW publication [Phys. Rev. D 99 (2019) 072009]

comparable results wrt. $\hat{\lambda}_{t\bar{t}W} = 1.19 \pm 0.26$

(expressed wrt. 1.2x YR4)


ttH (multil): multinomial classification

- Explore multinomial classifiers to simultaneously define signal and control regions
 - Processes are separated in the space of a multiD observable
 - Define CRs and VRs with a topology similar to the SR

• Clustering: add a single neighbouring bin to the seed and compute analytically the significance again; add the cell giving the largest improvement

Probing top and Higgs in multil and multib events | Zürich 12-04-21 | Tamara Vazquez Schrö

1.0

ttH and ttW and

Monte Carlo simulation (multilepton)

Process	Generator	ME order	Parton shower	PDF	Tune
$t\bar{t}H$	Powheg-BOX [23,24]	NLO	Pythia 8	NNPDF3.0 NLO [25]/	A14
	(Powheg-BOX)	(NLO)	(Herwig7)	NNPDF2.3 LO [48] (NNPDF3.0 NLO/ MMHT2014 LO [49])	(H7-UE-MMHT)
tHqb	MG5_AMC	LO	Pythia 8	CT10 [50]	A14
tHW	MG5_AMC	NLO	Herwig++	CT10/	UE-EE-5
				CTEQ6L1 [51,52]	
$t\bar{t}W$	Sherpa 2.2.1	MePs@Nlo	Sherpa	NNPDF3.0 NNLO	Sherpa default
	$(MG5_AMC)$	(NLO)	(Pythia 8)	(NNPDF3.0 NLO/	(A14)
				NNPDF2.3 LO)	
$tar{t}(Z/\gamma^*)$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO/	A14
				NNPDF2.3 LO	
	(SHERPA 2.2.0)	(LO multileg)	(Sherpa $)$	(NNPDF3.0 NLO)	(Sherpa default)
$t\bar{t} \to W^+ b W^- \bar{b} l^+ l^-$	MG5_AMC	LO	Pythia 8	NNPDF3.0 LO	A14
tZ	MG5_AMC	LO	Pythia 6	CTEQ6L1	Perugia2012
tWZ	MG5_AMC	NLO	Pythia 8	NNPDF2.3 LO	A14
$t\bar{t}t,t\bar{t}t\bar{t}$	MG5_AMC	LO	Pythia 8	NNPDF2.3 LO	A14
$t \bar{t} W^+ W^-$	MG5_AMC	LO	Pythia 8	NNPDF2.3 LO	A14
$tar{t}$	Powheg-BOX	NLO	Pythia 8	NNPDF3.0 NLO/	A14
				NNPDF2.3 LO	
Single top	Powheg-BOX [53,54]	NLO	Pythia 8	NNPDF3.0 NLO/	Perugia2012
(t-, Wt-, s-channel)				NNPDF2.3 LO	
VV, qqVV, VVV	Sherpa 2.2.2	MePs@Nlo	Sherpa	NNPDF3.0 NNLO	Sherpa default
$Z ightarrow l^+ l^-$	Sherpa 2.2.1	MePs@Nlo	Sherpa	NNPDF3.0 NLO	Sherpa default

Monte Carlo simulation (bb)

Process	ME generator	ME PDF	PS	Normalisation
Higgs boson				
$t\bar{t}H$	PowhegBox v2	NNPDF3.ONLO	Pythia8.230	NLO+NLO (EW) $[19]$
	PowhegBox v2	NNPDF3.ONLO	Herwig7.04	NLO+NLO (EW) [19]
	MadGraph5_aMC@NLO v2.6.0	NNPDF3.ONLO	Pythia8.230	NLO+NLO (EW) [19]
tHjb	MadGraph5_aMC@NLO v2.6.2	NNPDF3.ONLOnf4	Pythia8.230	_
tWH	MadGraph5_aMC@NLO v2.6.2 [DR]	NNPDF3.ONLO	Рүтніа8.235	_
$t\bar{t}$ and single-top)			
$tar{t}$	PowhegBox v2	NNPDF3.ONLO	Pythia8.230	NNLO+NNLL [45,46,47,48,49,50,51]
	PowhegBox v2	NNPDF3.ONLO	Herwig7.04	NNLO+NNLL [45,46,47,48,49,50,51]
	MadGraph5_aMC@NLO v2.6.0	NNPDF3.ONLO	Pythia8.230	NNLO+NNLL [45,46,47,48,49,50,51]
$t\bar{t}+b\bar{b}$	PowhegBoxRes	NNPDF3.0NLOnf4	Pythia8.230	_
	Sherpa v2.2.1	NNPDF3.0NNLOnf4	Sherpa	_
tW	PowhegBox v2 [DR]	NNPDF3.ONLO	Pythia8.230	NLO+NNLL [52,53]
	PowhegBox v2 [DS]	NNPDF3.ONLO	Pythia8.230	NLO+NNLL [52,53]
	PowhegBox v2 [DR]	NNPDF3.ONLO	Herwig7.04	NLO+NNLL [52,53]
	MadGraph5_aMC@NLO v2.6.2 [DR]	CT10NLO	Pythia8.230	NLO+NNLL [52,53]
<i>t</i> -channel	PowhegBox v2	NNPDF3.0NLOnf4	Pythia8.230	NLO [54,55]
	PowhegBox v2	NNPDF3.0NLOnf4	Herwig7.04	NLO [54,55]
	MadGraph5_aMC@NLO v2.6.2	NNPDF3.0NLOnf4	Рутніа8.230	NLO [54,55]
s-channel	PowhegBox v2	NNPDF3.ONLO	Pythia8.230	NLO [54,55]
	PowhegBox v2	NNPDF3.ONLO	Herwig7.04	NLO [54,55]
	MadGraph5_aMC@NLO v2.6.2	NNPDF3.ONLO	Pythia8.230	NLO [54,55]
Other				
W + jets	Sherpa v2.2.1 (NLO [2j], LO [4j])	NNPDF3.0NNLO	Sherpa	NNLO [56]
Z + jets	Sherpa v2.2.1 (NLO [2j], LO [4j])	NNPDF3.0NNLO	Sherpa	NNLO [56]
VV (had.)	Sherpa v2.2.1	NNPDF3.0NNLO	Sherpa	_
VV (lep.)	Sherpa v2.2.2	NNPDF3.0NNLO	Sherpa	_
VV (lep.) + jj	Sherpa v2.2.2 (LO $[EW]$)	NNPDF3.0NNLO	Sherpa	_
$t \bar{t} W$	MadGraph5_aMC@NLO v2.3.3	NNPDF3.ONLO	Pythia8.210	NLO+NLO (EW) [19]
	Sherpa v2.0.0 (LO [2j])	NNPDF3.0NNLO	Sherpa	NLO+NLO (EW) [19]
$tar{t}\ell\ell$	MADGRAPH5_aMC@NLO v2.3.3	NNPDF3.ONLO	Pythia8.210	NLO+NLO (EW) [19]
	Sherpa v2.0.0 (LO [1j])	NNPDF3.0NNLO	Sherpa	NLO+NLO (EW) [19]
$t\bar{t}Z~(qq,\nu\nu)$	MADGRAPH5_aMC@NLO v2.3.3	NNPDF3.ONLO	Pythia8.210	NLO+NLO (EW) [19]
	Sherpa v2.0.0 (LO [2j])	NNPDF3.ONNLO	Sherpa	NLO+NLO (EW) [19]
$t \bar{t} t \bar{t}$	MADGRAPH5_aMC@NLO v2.3.3	NNPDF3.1NLO	Рутніа8.230	NLO+NLO (EW) [57]
tZq	MadGraph5_aMC@NLO v2.3.3 (LO)	CTEQ6L1	Рутніа8.212	_
tWZ	MADGRAPH5_aMC@NLO v2.3.3 [DR]	NNPDF3.ONLO	Pythia8.230	_

ttH(bb): uncertainties

Uncertainty source	Description				Components
$t\bar{t}$ cross-section	$\pm 6\%$				$t\bar{t} + light$
$t\bar{t} + \geq 1b$ normalisation	Free-floating		$t\bar{t} + \geq 1b$		
$t\bar{t}+{\geq}1c$ normalisation	$\pm 100\%$		$t\bar{t}+{\geq}1c$		
NLO matching	MadGraph5_aMC@NLO+Pythia	THIA8	All		
PS & hadronisation	PowhegBox+Herwig7 vs. Powhe	GBOX+Pyth	HIA8		All
ISR	Varying α_S^{ISR} (PS), $\mu_{\text{R}} \& \mu_{\text{F}}$ (ME) in POWHEGE		GBOXRES+	-Pythia8	$t\bar{t} + \geq 1b$
1510	Varying α_S (PS), $\mu_{\rm R} \alpha \mu_{\rm F}$ (ME)	in Powhee	GBox+Py	$t\bar{t} + \geq 1c, t\bar{t} + \text{light}$	
FSR	Varying α_S^{FSR} (PS)	in PowhegBoxRes+Pythia8			$t\bar{t} + \geq 1b$
1.010	varying α_S (FS)	in Powhee	GBOX+PY7	THIA8	$t\bar{t} + \geq 1c, t\bar{t} + \text{light}$
$t\bar{t} + \geq 1b$ fractions	PowhegBox+Herwig7 vs. Powhe	GBox+Pyti	HIA8		$t\bar{t} + 1b/1B, t\bar{t} + \ge 2b$
$p_{\rm T}^{bb}$ shape	Shape mismodelling measured from	data			$t\bar{t} + \geq 1b$
					=
τ	Uncertainty source		Δ	$\Delta \mu$	
\overline{t}	$\bar{t} + \geq 1b$ modelling		+0.25	-0.24	_
t	$\bar{t}H$ modelling		+0.14	-0.06	
t	W modelling		+0.08	-0.08	
	-tagging efficiency and mis-tag	rates	+0.05	-0.05	
	Background-model statistical un		+0.05	-0.05	
	let energy scale and resolution	J	+0.03	-0.03	

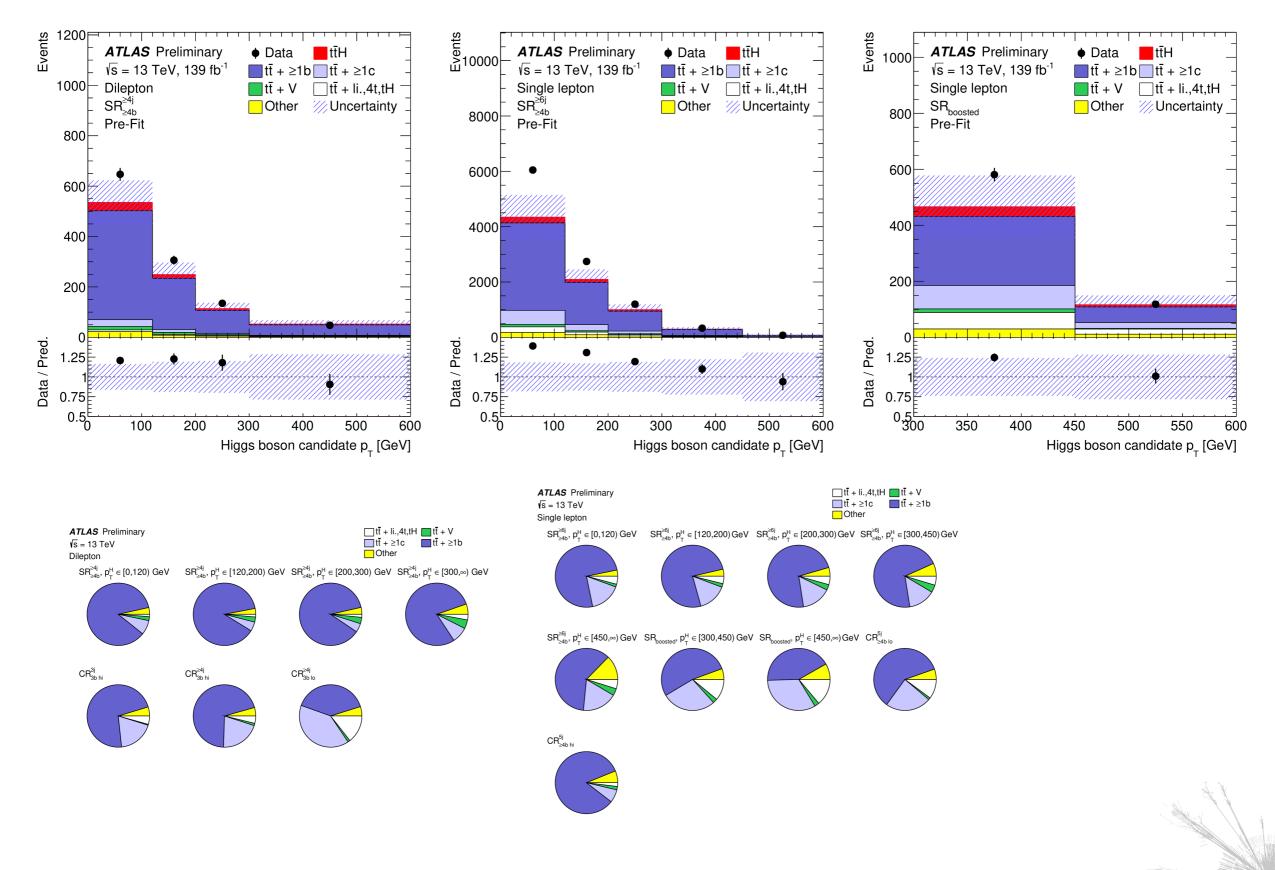
$t\bar{t}H$ modelling	+0.14	-0.06
$tW \mathrm{modelling}$	+0.08	-0.08
b-tagging efficiency and mis-tag rates	+0.05	-0.05
Background-model statistical uncertainty	+0.05	-0.05
Jet energy scale and resolution	+0.03	-0.03
$t\bar{t} + \geq 1c \mod$	+0.03	-0.03
$t\bar{t} + \text{light modelling}$	+0.02	-0.02
Luminosity	+0.01	-0.00
Other sources	+0.03	-0.03
Total systematic uncertainty	+0.30	-0.27
$t\bar{t} + \geq 1b$ normalisation	+0.03	-0.05
Total statistical uncertainty	+0.20	-0.19
Total uncertainty	+0.36	-0.33

ttH(bb): input variables BDT (I)

dilepton

Variable	Definition	$\mathbf{SR}_1^{\geq 4j}$	$SR_2^{\geq 4j}$	$SR_3^{\geq 4}$
General kinema	tic variables			
m_{bb}^{\min}	Minimum invariant mass of a <i>b</i> -tagged jet pair	✓	\checkmark	-
m_{bb}^{\max}	Maximum invariant mass of a <i>b</i> -tagged jet pair	-	-	\checkmark
$m_{bb}^{\min \Delta R}$	Invariant mass of the <i>b</i> -tagged jet pair with minimum ΔR	~	-	\checkmark
$m_{jj}^{\max p_{T}}$	Invariant mass of the jet pair with maximum $p_{\rm T}$	~	-	-
$m_{bb}^{\max p_{\mathrm{T}}}$	Invariant mass of the <i>b</i> -tagged jet pair with maximum $p_{\rm T}$	\checkmark	-	\checkmark
$\Delta \eta^{ m avg}_{bb}$	Average $\Delta \eta$ for all <i>b</i> -tagged jet pairs	\checkmark	\checkmark	\checkmark
$\Delta \eta_{\ell,j}^{\max}$	Maximum $\Delta \eta$ between a jet and a lepton	-	\checkmark	\checkmark
$\Delta R_{bb}^{\max p_{\mathrm{T}}}$	ΔR between the <i>b</i> -tagged jet pair with maximum $p_{\rm T}$	-	\checkmark	\checkmark
$N_{bb}^{\text{Higgs } 30}$	Number of <i>b</i> -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	~	\checkmark	-
$n_{\rm jets}^{p_{\rm T}>40}$	Number of jets with $p_{\rm T} > 40 \text{ GeV}$	-	\checkmark	\checkmark
Aplanarity _{b-jet}	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor [100] built with all <i>b</i> -tagged jets	-	\checkmark	-
$H_{ m T}^{ m all}$	Scalar sum of $p_{\rm T}$ of all jets and leptons	-	-	\checkmark
Variables from	reconstruction BDT	1		
BDT output	Output of the reconstruction BDT	✓**	✓**	\checkmark
$m_{bb}^{ m Higgs}$	Higgs candidate mass	~	-	\checkmark
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	√*	-	-
$\Delta R_{H,\ell}^{\min}$	Minimum ΔR between Higgs candidate and lepton	✓	\checkmark	\checkmark
$\Delta R_{H,b}^{\min}$	Minimum ΔR between Higgs candidate and <i>b</i> -jet from top	~	\checkmark	-
$\Delta R_{H,b}^{\max}$	Maximum ΔR between Higgs candidate and <i>b</i> -jet from top	-	\checkmark	-
$\Delta R_{bb}^{\mathrm{Higgs}}$	ΔR between the two jets matched to the Higgs candidate	-	\checkmark	-
Variables from				
Higgs W _{b-tag}	Sum of <i>b</i> -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	-	\checkmark	-

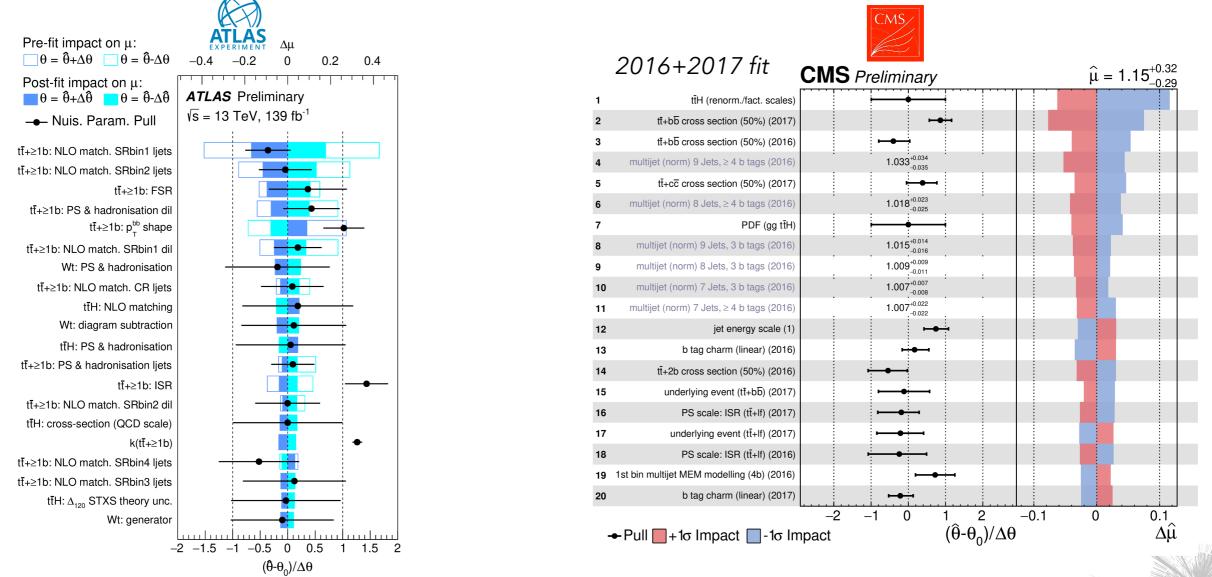
ttH(bb): input variables BDT (II)

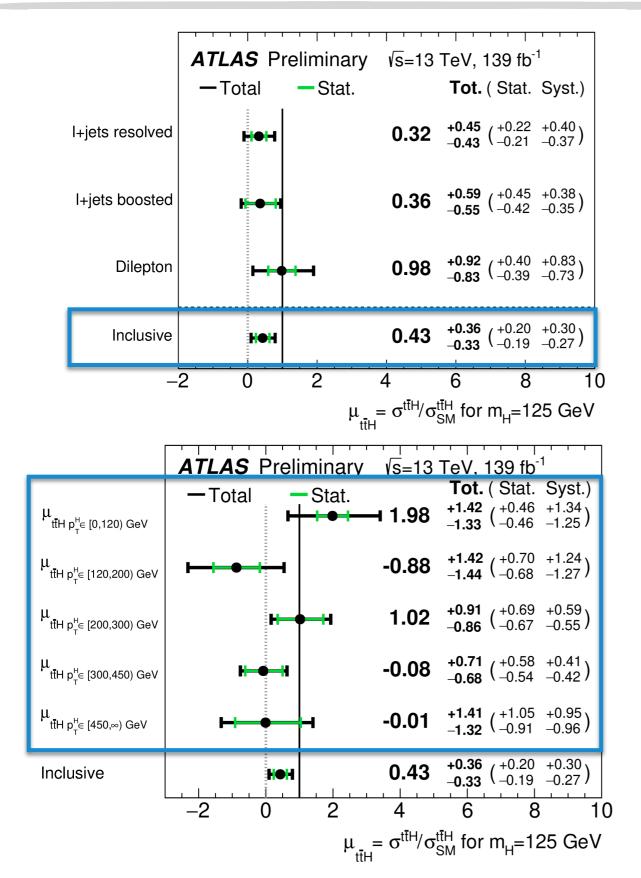

single lepton (resolved)

single lepton (boosted)

Variable	Definition	$SR_{1,2,3}^{\geq 6j}$	SR ^{5j} _{1,2}		
General kine	matic variables	·			
$\Delta R_{bb}^{\rm avg}$	Average ΔR for all <i>b</i> -tagged jet pairs	 ✓ 	\checkmark		
$\Delta R_{bb}^{\max p_{\mathrm{T}}}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum $p_{\rm T}$	\checkmark	_		
$\Delta \eta_{\rm jj}^{\rm max}$	Maximum $\Delta \eta$ between any two jets	 ✓ 	\checkmark		
$m_{bb}^{\min \Delta R}$	Mass of the combination of two <i>b</i> -tagged jets with the smallest ΔR	✓	-		
$m_{ii}^{\min \Delta R}$	Mass of the combination of any two jets with the smallest ΔR	-	\checkmark	Variable	Definition
$N_{bb}^{ m Higgs \ 30}$	Number of <i>b</i> -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	~	\checkmark	Variables from	jet reclustering
$H_{ m T}^{ m had}$	Scalar sum of jet $p_{\rm T}$	-	\checkmark	$\Delta R_{H,t}$	ΔR between the Higgs-boson and top-quark candidates
$\Delta R_{\ell,bb}^{\min}$	ΔR between the lepton and the combination of the two <i>b</i> -tagged jets	_	\checkmark	$\Delta R_{t,b^{\mathrm{add}}}$	ΔR between the top-quark candidate and additional <i>b</i> -jet
<i>ł,bb</i>	with the smallest ΔR		·	$\Delta R_{H,b^{ ext{add}}}$	ΔR between the Higgs-boson candidate and additional <i>b</i> -jet
Aplanarity	1.5 λ_2 , where λ_2 is the second eigenvalue of the momentum tensor [100] built with all jets	✓	\checkmark	$\Delta R_{H,\ell}$	ΔR between the Higgs-boson candidate and lepton
H_1	Second Fox–Wolfram moment computed using all jets and the lepton	✓	\checkmark	$m_{\rm Higgs}$ candidate	Higgs-boson candidate mass
Variables from	m reconstruction BDT	<u> </u>		$\sqrt{d_{12}}$	Top-quark candidate first splitting scale [101]
BDT output	Output of the reconstruction BDT	√*	√*	Variables from	
$m_{bb}^{ m Higgs}$	Higgs candidate mass	~	\checkmark		
$m_{H,b_{\mathrm{lep top}}}$	Mass of Higgs candidate and <i>b</i> -jet from leptonic top candidate	✓	-	W _{b-tag}	Sum of <i>b</i> -tagging discriminants of all <i>b</i> -jets
$\Delta R_{bb}^{\mathrm{Higgs}}$	ΔR between <i>b</i> -jets from the Higgs candidate	\checkmark	\checkmark	$w_{b-\text{tag}}^{\text{add}}/w_{b-\text{tag}}$	Ratio of sum of <i>b</i> -tagging discriminants of additional <i>b</i> -jets to all <i>b</i> -jets
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	√*	√*		·
$\Delta R_{H, \text{lep top}}$	ΔR between Higgs candidate and leptonic top candidate	 ✓ 	-		
$\Delta R_{H,b_{ ext{had top}}}$	ΔR between Higgs candidate and <i>b</i> -jet from hadronic top candidate	-	√*		
Variables from	m likelihood and matrix element method calculations				
LHD	Likelihood discriminant	✓	\checkmark		
MEM	Matrix element discriminant (in $SR_1^{\geq 6i}$ only)	(
Variables from	m <i>b</i> -tagging (not in $SR_1^{\geq 6j}$)	1			
$w_{b-\mathrm{tag}}^{\mathrm{Higgs}}$	Sum of <i>b</i> -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	~	\checkmark		
$B_{\rm jet}^3$	3 rd largest jet <i>b</i> -tagging discriminant	✓	\checkmark		X X
$B_{\rm jet}^4$	4 th largest jet <i>b</i> -tagging discriminant	✓	\checkmark		the the second
$B_{\rm jet}^5$	5 th largest jet <i>b</i> -tagging discriminant	\checkmark	\checkmark		

tīH(bb): background and p_T^H

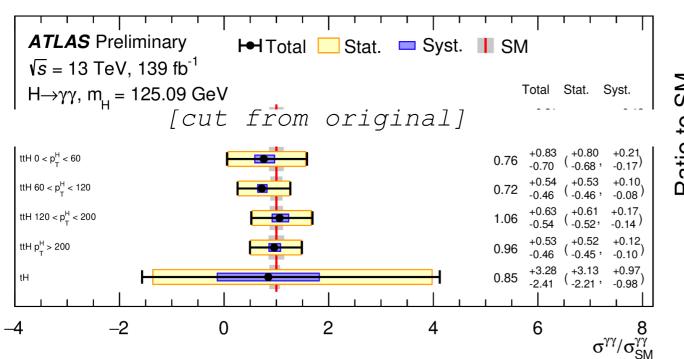



tīH(bb): modelling uncertainties

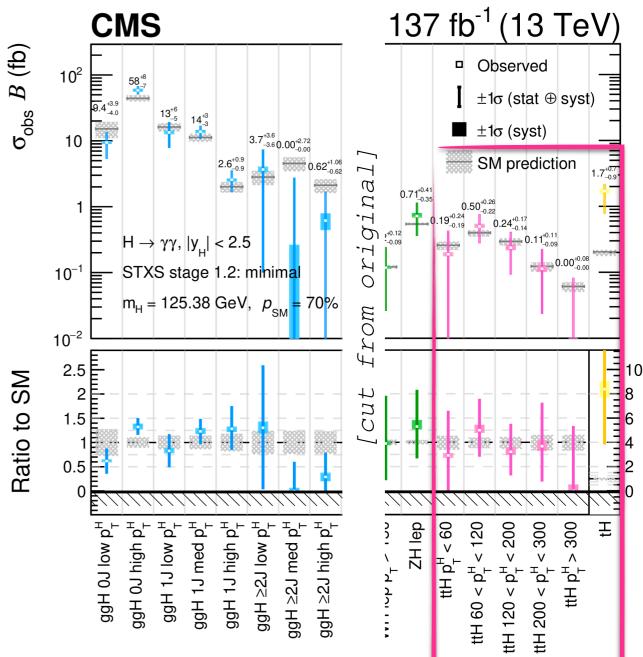
- Generator: Powheg+Pythia8 vs aMC@NLO+Pythia8 (5FS)
- Parton shower: Powheg+Pythia8 vs Powheg+Herwig7
- ISR (+scale), FSR, $t\bar{t}$ +1b vs $t\bar{t}$ +≥2b fraction uncertainties
- p_T^{bb} shape uncertainty (ad-hoc)
- Free-floating normalisation tī+≥1b
- Nuisance parameter (100% prior) $t\bar{t}+\geq 1c$ normalisation

- Parton shower: ISR/FSR
- tt underlying event
- 🕨 tī hdamp
- Scale variations
- Nuisance parameters for normalisation of tt+bb, tt+2b, tt+b, and tt+≥1c (50% prior) and decorrelated between years

ttH(bb): results


	35.9 fb ⁻¹ (2016) + 41.5 fb ⁻¹ (2017) (13 TeV)									
		CMS Prelir	ninarv	,	1 1	I				
			i i i i ai y	μ	tot	stat	syst			
Fu	Ily-hadronic		, , , ,	-0.38	+1.02	+0.54	+0.86			
10				0100	-1.06	-0.54	-0.91			
S	ingle-lepton			1.22	+0.41	+0.19	+0.36			
U			H H			-0.18	-0.32			
	Dilepton			1.04	+0.74	+0.39	+0.63			
	Dilepton			1.04	-0.71	-0.38	-0.59			
	2016	H	1 1 1 1	0.85	+0.43	+0.22	+0.37			
	2010			0.00	-0.41	-0.22	-0.35			
	2017		;	1.49	+0.44	+0.21	+0.39			
	2017			1.40	-0.40	-0.20	-0.35			
	Combined			1.15	+0.32	+0.15				
	Complined				-0.29	-0.15	-0.25			
		0		5			10			
						-	_			

 $\widehat{\mu}=\widehat{\sigma}/\sigma_{\text{SM}}$


- NF(tī+≥1b) = 1.26 ± 0.09
- Dominated by systematic uncertainties
- Most relevant uncertainties related to $t\bar{t}+\geq 1b$ background modelling ($\Delta\mu/\mu = 60\%$ and 15%)
- Significance w.r.t background-only hypothesis:
 1.3 (3.0σ) and 3.9σ (3.5σ) obs (exp)
 - **Evidence** for tīH in H→bb channel
- First ttH(bb) STXS measurement
 - Complements ttH(γγ) STXS measurements at high ptH

tŧH(H→γγ): STXS

- First channel to perform tt̄H measurement differentially
- Mixture of multiclass BDT (STXS signal vs other signals) and binary BDTs (STXS signal vs background)
- Mixture of Top DNN (ttH vs tH) and BDT (STXS signal vs non-Higgs SM background), and final classification based on reco p_T(yy)

• Dominated by stat uncertainty but overall compatible with SM predictions

