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Unsupervised learning

m Extract crucial features without any guidance

Latent Space
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“Supervised learning”
most neural network applications
PP

>

teacher student

(smart) (imitates teacher)

final level limited by teacher

“Reinforcement learning”
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student/scientist
(tries out things)
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final level: unlimited (?)
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AlphaGo

In 2016 AlphaGo defeated world
champion Lee Sedol

only one kind of move: place a stone
19 x 19 board

win by surrounding more territories
than your opponent

10170 possible board configuration

experts player often motivate moves
by intuition




Reinforcement learning

» Defineagoal

+ We do not tell how to reach the goal, we only say what is good and

whatis bad

» We are not the “teacher” anymore, more like a “customer”...

Closest concept to Artificial Intelligence (Al)




Reinforcement learning

observation fully or partially observed

state of the environment

agent “environment”’

s The “correct” action is not known! -
(no supervised learning...)

state = position X,y
action = move (direction)
reward for picking up box

® How to know what is right or wrong?

—> Reward system
» can be defined only atthe end... .
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Value-based RL algorithms: Q-learning

— Value (V) / Quality (Q) functions
V(is)=LE [Rt St]

Q.(s,a)=E :Rt | s, at]

®m expected future rewards for a given state/action

» how “valuable”is a given state/action

o0
= discounted futurereward R = ) y-lp,

k=t+1

” of a state “Quality” of 4 actions
“going up/down/left/right”

“Value

‘ Note:

V(s) =maxq Q(s, a)
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Q-learning

Input Output

(state) O  (Q-values)
How do we calculate the O-function...? —» Neural Network!

O00O0
00O

Q-learning algorithm:

\) e Observes

e Select and execute a

r o Receive thereward r
= NN update: e Update the Q-value: Q""(s, a) <«
Q%(s, a) + an (r + y maxqy QY9(s’, @’) - Q°s, a))
o targetQ(s,a):r+vyV(s’) A l
learning rate target

m Deterministic policy
» greedy (always pick action with best Q-value)

> e-greedy (balance between exploitation and exploration)
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Policy-based RL algorithms

action

‘policy”

state — action

observation

RL-agent RL-environment

— Policy: my(a,|s,) A

SN
> probability to pick up action a; given observed state S; o /\
>

actions

® Find the optimal policy

> maximise the total expected reward

ZE 81117'('9 CLt|St)]

> run many trajectories to get ... ]
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https://www.youtube.com/watch?v=TmPfTpjtdgg

ICS

RL in High
Energy Phys




RLIin HEP

® \Veryrecent development...

> “Automatic performance optimisation and first steps BHN10  BPM6O

towards reinforcement learning at the CERN Low

Energy Ion Ring”, 2nd ICFA Workshop on Machine
Learning for Charged Particle Accelerators (2019)

» “Real-time Artificial Intelligence for Accelerator Control.:
A Study at the Fermilab Booster”, arXiv:2011.07371

> “Jet grooming through reinforcement learning”,
arxXiv:1903.09644

> “Hierarchical clustering in particle physics through
reinforcement learning”, arXiv:2011.08191
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RL to control accelerator systems arXiv:2011.07371

® Accelerator physics is often too complex to use

I

target
» requires a lot of hand tuning by experts e campled 0 oror)
connect Imin, Imax
> risk of hidden inefficiencies

analytical models or Monte Carlo simulations

Programmable
logic

“| lcontrol signals

Goal: adjust power supply to reach optimal

T FIG. 1. Schematic view of the GMPS control environment.
Condltlon The human operator specifies a target program via the Ac-
celerator Control Network that is transmitted to the GMPS

control board.

What is the environment? D
Agent
Challenge: create a model that reproduce the et e actor
I Rt+l [ '
behaviour of the real-world system 5| Environment I
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RL to control accelerator systems arXiv:2011.07371

Two-fold application of ML ANNvs DATA

103.48 —— Data
—— Digital Twin

L

111111

m Recurrent Neural Network (RNN) 10344 WWW 'M

111111

used to model the accelerator system$ . 1
response -

—

_—— T T

I

333333

> Supervised learning on real data

333333

(time series of a set of variables) ° * ime samples



RL to control accelerator systems arXiv:2011.07371

RNN vs DATA

103.48 —— Data
—— Digital Twin

Two-fold application of ML

103.46

m Recurrent Neural Network (RNN) 10344
used to model the accelerator system£w. MWW M N
response 103.36

——

M 103.38

103.34

103.32

» Supervised learning on real data
(time series of a set of variables) ° O e samplos

m on-line RL agent RL agenf: factor 2 improvement

T
Y Rl Current controller reward
—— DQN-MLP controller reward

» Actions: change in the current
(0, £0.001, etc.)

/J”V’WM/\MN“

» Reward: (negative) difference
between the target and realized

current K current controller systen

Rt X — |Ireal(t) - Itarget(t) |

Total Reward

Eﬁisddes 22



RL with jets

Jets are the result of the hadronization of quarks
and gluons produced at collider experiments

—> Reconstructing the properties of the original
elementary particle is a fundamental step in
data analysis

Challenge: even knowing the QCD splitting
probabilities, the large combinatorial space make
impossible to find the true maximum-likelihood solution

Popular clustering algorithms

s k7, Cambridge-Aachen, anti-kr

di,j - min(p%i, p%j)

R -
d;p = D7, —> greedy & heuristic




RL for clustering jets arXiv:2011.08191

Goal: reconstruct the most plausible binary tree
of particle splittings

S1

oo

State: particle’s four-momentas = {pj, ... pn} ay " ar
S9o S
Action: choice of two particles a = (i, j) to be merged r 2 r
Reward: splitting probabilities R(s,a) = log ps(si|ss1) M y
S3 S3 §3 T2

Episode ends when only one particle is left

Train policy network that
(1) lead to the largest reward (via MCTS)

(2) imitate the true actions = Behavioural cloning (BC)



RL for clustering jets arXiv:2011.08191

Tree log likelihood relative to greedy

...... MLE
44 —-= Random
| ==- Greedy
Beam search
— MCTS
3_ -----
5 el
- '\.
i \.
i \.
1 \‘
j ~150 - \,
\
| 10 15
O_ _____________________________
10 15

Number of leaves

+«— RL policy

+— Baseline: greedy algorithm that at
each state picks the action with the
maximum splitting likelihood p;
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DFEI. Deep Full Event
Interpretation with RL

Julian Garcia Pardinas(), Andrea Mauri('), Marta Calvi, Jonas Eschle, Simone Meloni, Nicola Serra

DFEI receives funding from H2020-MSCA-IF program (1) and SNSF PostDoc Mobility program (2
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https://cordis.europa.eu/project/id/892683

Full Event Interpretation

® RL can be very useful in case of large combinatorial space

ATLAS
D EXPERIMENT

http://atlas.ch

Run: 189280

Event: 143576946
2011-09-14 12:37:11 CEST

&

O

Event 58049711
Run 153460
Wed, 03 Jun 2015 12:05:39

Current
Run 1 + Run 2
1.1 vis. interaction

Upgrade |
Run 3 + Run 4
5.5 vis. interaction

Upgrade Il
Run 5 + Run x
55 vis. interaction




Full Event Interpretation

Candidates / (24 MeV/c?)

m So farin physics analysis at LHCDb, the selection of signal candidates only
focuses on a given decay mode

> e.g. Bt - Ktete™
—> select events that pass some smart criteria

Parti :
ArXiv-2103.11769 artially reconstructed decays

. LHCb B’ > K ete”
200 —+4— Data9 fb™!

180 — Total fit T

1608 I'Nell: e B*— K'ete- e

140 B B —= Jiy(eter)KH p d .+t
120 B Part. Reco. /

Combinatorial

0..
“a

The pion is really not reconstructed
or we simply don’t look for it...”?

m(K*e*te~) [MeV/c?]
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Full Event Interpretation

m So farin physics analysis at LHCDb, the selection of signal candidates only
focuses on a given decay mode

> e.g. Bt - Ktete™
—> select events that pass some smart criteria

ArXiv-2103.11769 Combinatorial background

%4218 LHCH (random combination of tracks)
200 é —— Data 9 fb_l
180 — Total fit

B B — J/y(ete )K? ~ \‘
B Part. Reco. i ~ L -
Combinatorial ’

I S

Candidates / (24 MeV/c?)
=
-

e,
Sa

mix of decay of the other b-hadron
+ rest of the event

m(K*e*te~) [MeV/c?]
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Full Event Interpretation

—> Zoom out and try to look the full event!

A will create a new paradigm in event selection and
signal identification




DFEI: how...?

® Goal: reconstruct most likely decay
chains in the event

m State: final state particle
(kinematics + PID)

®m Actions: match pairs of particles

® Reward: quality of the reconstructed
vertex

Promising applications:

Episode # 100

2.0

1.5 A

— off-line: improving signal efficiency/background rejection

—> on-line: triggering on interesting objets/identify relevant set of final state particles

to be saved on disk for off-line data analysis

Work (u Progress...
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Conclusion

@ RL can provide powerful algorithm to solve highly combinatorial problems
® First application in different HEP domains seems promising

® Ongoing studies on the development of Full Event Interpretation RL
algorithms

— Final level: unlimited! Movies of the 90s: soon AI will take over the world
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