

Reinforcement Learning in HEP

Andrea Mauri

UZH seminar

May 10th, 2021

output

output

Ramón y Cajal, 1899

output

"cat"

Supervised learning

Unsupervised learning

Extract crucial features without any guidance

AlphaGo

- In 2016 AlphaGo defeated world champion Lee Sedol
- only one kind of move: place a stone
- 19 x 19 board
- win by surrounding more territories than your opponent
- 10¹⁷⁰ possible board configuration
- experts player often motivate moves by intuition

Reinforcement learning

- Define a goal
 - We do not tell how to reach the goal, we only say what is good and what is bad
- ▶ We are not the "teacher" anymore, more like a "customer"...

Closest concept to Artificial Intelligence (AI)

Reinforcement learning

fully or partially observed state of the environment

- The "correct" action is not known! (no supervised learning...)
- How to know what is right or wrong? \implies Reward system
 - can be defined only at the end...

Value-based RL algorithms: Q-learning

⇒ Value (V) / Quality (Q) functions

- expected future rewards for a given state / action
 - how "valuable" is a given state / action
- discounted future reward $R_t \equiv \sum_{k=t+1}^{\infty} \gamma^{k-t-1} r_k$

$$V_{\pi}(s_t) \equiv \mathbb{E}[R_t | s_t]$$

$$Q_{\pi}(s_t, a_t) \equiv \mathbb{E}[R_t | s_t, a_t]$$

"Value" of a state

"Quality" of 4 actions

"going up/down/left/right"

Note:

 $V(s) = \max_{a} Q(s, a)$

Q-learning

How do we calculate the Q-function...? \longrightarrow Neural Network!

- NN update:
 - target Q(s,a): $r + \gamma V(s')$

Q-learning algorithm:

- Observe s
- Select and execute a
- Receive the reward r
- Update the Q-value: $Q^{\text{new}}(s, a) \leftarrow Q^{\text{old}}(s, a) + \alpha_n (r + \gamma \max_{a'} Q^{\text{old}}(s', a') Q^{\text{old}}(s, a))$ learning rate target

- Deterministic policy
 - greedy (always pick action with best Q-value)
 - \triangleright ε -greedy (balance between exploitation and exploration)

Policy-based RL algorithms

- \Longrightarrow Policy: $\pi_{\theta}(a_t | s_t)$
 - \triangleright probability to pick up action a_t given observed state s_t

- Find the optimal policy
 - maximise the total expected reward
 - ▶ run many trajectories to get E[...]

$$\frac{\partial \bar{R}}{\partial \theta} = \sum_{t} \mathbb{E}[R \frac{\partial \ln \pi_{\theta}(a_{t}|s_{t})}{\partial \theta}]$$

RL in High Energy Physics

RL in HEP

- Very recent development...
 - * "Automatic performance optimisation and first steps towards reinforcement learning at the CERN Low Energy Ion Ring", 2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators (2019)
 - * "Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster", arXiv:2011.07371
 - ▶ "Jet grooming through reinforcement learning", arXiv:1903.09644
 - "Hierarchical clustering in particle physics through reinforcement learning", arXiv:2011.08191

RL to control accelerator systems arXiv:2011.07371

- Accelerator physics is often too complex to use analytical models or Monte Carlo simulations
 - requires a lot of hand tuning by experts
 - risk of hidden inefficiencies

Goal: adjust power supply to reach optimal condition

What is the environment?

Challenge: create a model that reproduce the behaviour of the real-world system

FIG. 1. Schematic view of the GMPS control environment. The human operator specifies a target program via the Accelerator Control Network that is transmitted to the GMPS control board.

RL to control accelerator systems arXiv:2011.07371

Two-fold application of ML

- Recurrent Neural Network (RNN)

 used to model the accelerator system

 [103.44]

 103.42

 103.42

 103.46

 response
 - Supervised learning on real data (time series of a set of variables)

on-line RL agent

- Actions: change in the current $(0, \pm 0.001, \text{ etc.})$
- Reward: (negative) difference between the target and realized current

$$R_t \propto - |I_{real}(t) - I_{target}(t)|$$

RL agent: factor 2 improvement

RL to control accelerator systems arXiv:2011.07371

Two-fold application of ML

- Recurrent Neural Network (RNN)

 used to model the accelerator system

 [103.42]

 103.42

 103.42

 103.42

 103.38

 response
 - Supervised learning on real data (time series of a set of variables)

on-line RL agent

- Actions: change in the current $(0, \pm 0.001, \text{ etc.})$
- Reward: (negative) difference between the target and realized current

$$R_t \propto - |I_{real}(t) - I_{target}(t)|$$

RL agent: factor 2 improvement

RL with jets

Jets are the result of the hadronization of quarks and gluons produced at collider experiments

Reconstructing the properties of the original elementary particle is a fundamental step in data analysis

Challenge: even knowing the QCD splitting probabilities, the large combinatorial space make impossible to find the true maximum-likelihood solution

Popular clustering algorithms

 k_T , Cambridge-Aachen, anti- k_T

$$d_{i,j} = min(p_{T,i}^a, p_{T,j}^a) \frac{\Delta R_{i,j}}{R}$$

$$d_{i,B} = p_{T,i}^a \implies \text{greedy \& heuristic}$$

RL for clustering jets arXiv:2011.08191

Goal: reconstruct the most plausible binary tree of particle splittings

State: particle's four-momenta $s = \{p_1, \dots p_N\}$

Action: choice of two particles a = (i, j) to be merged

Reward: splitting probabilities $R(s,a) = \log p_s(s_t|s_{t-1})$

Episode ends when only one particle is left

Train policy network that

- (1) lead to the largest reward (via MCTS)
- (2) imitate the true actions \Longrightarrow Behavioural cloning (BC)

RL for clustering jets arXiv:2011.08191

DFEI: Deep Full Event Interpretation with RL

Julian Garcia Pardinas⁽¹⁾, Andrea Mauri⁽¹⁾, Marta Calvi, Jonas Eschle, Simone Meloni, Nicola Serra DFEI receives funding from H2020-MSCA-IF program ⁽¹⁾ and SNSF PostDoc Mobility program ⁽²⁾

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

University of Zurich^{UZH}

RL can be very useful in case of large combinatorial space

So far in physics analysis at LHCb, the selection of signal candidates only focuses on a given decay mode

$$\triangleright$$
 e.g. $B^+ \rightarrow K^+ e^+ e^-$

⇒ select events that pass some smart criteria

Partially reconstructed decays:

$$B^{0} \rightarrow K^{+}\pi^{-}e^{+}e^{-}$$

$$\pi^{-}$$

$$\kappa^{+}$$

$$e^{+}$$

The pion is really not reconstructed or we simply don't look for it...?

 So far in physics analysis at LHCb, the selection of signal candidates only focuses on a given decay mode

$$\triangleright$$
 e.g. $B^+ \rightarrow K^+ e^+ e^-$

⇒ select events that pass some smart criteria

Combinatorial background (random combination of tracks)

mix of decay of the other b-hadron + rest of the event

⇒ Zoom out and try to look the full event!

A Full Event Interpretation will create a new paradigm in event selection and signal identification

DFEI: how...?

- Goal: reconstruct most likely decay chains in the event
- State: final state particle (kinematics + PID)
- Actions: match pairs of particles
- Reward: quality of the reconstructed vertex

Promising applications:

- ⇒ off-line: improving signal efficiency/background rejection
- on-line: triggering on interesting objets / identify relevant set of final state particles to be saved on disk for off-line data analysis

Work in progress...

Conclusion

- RL can provide powerful algorithm to solve highly combinatorial problems
- First application in different HEP domains seems promising
- Ongoing studies on the development of Full Event Interpretation RL algorithms
 - ⇒ Final level: unlimited!

