Heavy Flavour Production at HERA

Michel Sauter

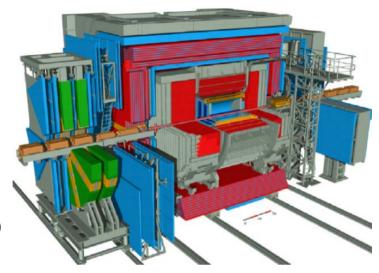
Ruprecht-Karls-Universität Heidelberg for the H1 and ZEUS Collaborations

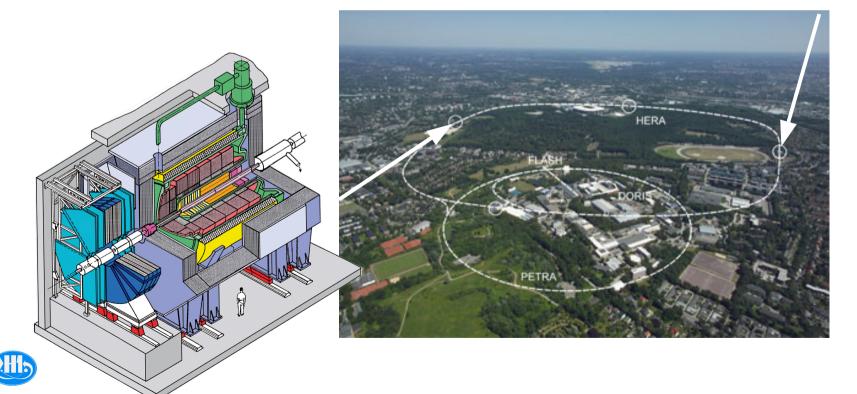
BEAUTY 2011

13th International Conference on B-Physics at Hadron Machines April 4th-8th 2011, Amsterdam, The Netherlands

The HERA ep collider (1992 - 2007)

• ep collider:

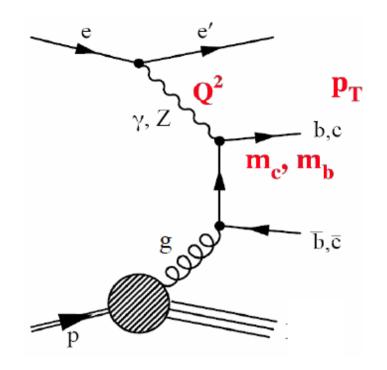

• e[±] energy: 27.6 GeV


• p energy: 920 GeV

Center of mass energy: 319 GeV

• 2 collider experiments: H1 and ZEUS

• Integrated luminosity: $\sim 0.5 \text{ fb}^{-1}$ (per experiment)



Motivation to measure heavy flavor production

- Charm and Beauty quarks at HERA are mainly produced in Photon-Gluon-Fusion → sensitive to the gluon in the proton.
- Hard scales for perturbative QCD:
 - $-m_{c,b}^{2}, p_{T}^{2}, Q^{2}$
 - > multi-scale problem.
- Interpretation of Heavy Flavour measurements:
 - Use the pQCD calculations and constrain the gluon density of the proton.
 - Take the gluon density from elsewhere and test the consistency of the pQCD calculation.

Two kinematic regimes:

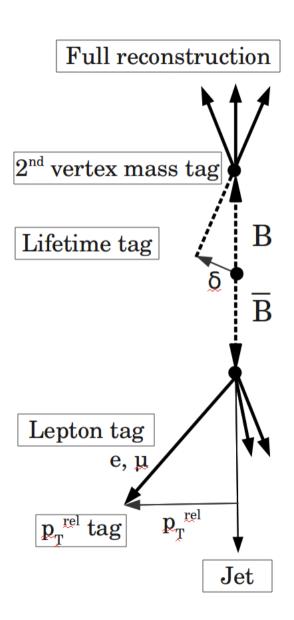
• Photoproduction: $Q^2 \approx 0 \text{ GeV}^2$

• Deep Inelastic Scattering: $Q^2 > 1 \text{ GeV}^2$ (scattered electron detected)

pQCD approximations

- Massive scheme Fixed flavour number scheme (FFNS):
 - c and b quarks generated dynamically via boson-gluon-fusion.
 - c and b quarks treated massive.
 - Valid for small scales $\mu^2 \approx m_{b,c}^{2}$
- Massless scheme Zero mass variable flavour number scheme (ZM-VFNS)
 - c and b quarks treated as massless partons in the proton and photon.
 - Valid for large scales $\mu^2 \gg m_{b,c}^{2}$
- Variable Flavor Number Scheme (GM-VFNS)
 - Interpolation between massive and massless model.
 - Massive at low scales
 - Massless at high scales.

Monte Carlo generators


- QCD LO + Parton Shower MC:
 - Collinear factorization, DGLAP evolution (PYTHIA for photoproduction and RAPGAP for DIS).
 - $-k_{T}$ factorization, CCFM evolution (CASCADE).
 - Used for data corrections and model comparisons.

QCD NLO

- Massive scheme, NLO(α_s^2):
 - FMNR: Photoproduction.
 - HVQDIS: DIS.
- Used for comparisons and extrapolations to full heavy quark cross sections.

Tagging methods for heavy flavour physics at HERA

- Rates at HERA behaved like $\sigma(b)$: $\sigma(c)$: $\sigma(uds) \approx 1:50:2000$
- Charm and beauty enrichment is possible with:
 - 1) Full reconstruction
 - Only possible for charm at HERA, eg. $D^* \rightarrow K\pi\pi$. No suitable beauty decay channels with high statistics.
 - 2) Lepton tagging
 - Use semileptonic b/c decay channels:
 - ≥ look for μ or e , high BR(c,b→ lepton + anything)
 - 3) p_{T}^{rel} tagging
 - b/c quark have large masses:
 - look for decay leptons with a high transverse momentum w.r.t the b quark flight direction.
 - 4) Lifetime tagging
 - b/c quark have long lifetimes:
 - look for displaced vertices.
 - > look for tracks with large impact parameters δ .
 - 5) Secondary vertex mass tagging
 - Use high b quark mass and long lifetimes:
 - look for high secondary vertex masses.
 - Combination of different tagging methods.

Charm and beauty in photoproduction

Photoproduction of D* and two jets

Data sample: $\mathcal{L}=93 \text{ pb}^{-1}$

Phase Space $Q^2 < 2GeV^2$, $p_T^{D*} > 2.1GeV$ 2 jets with: $p_T^{jet \ 1} > 3.5 \ GeV$

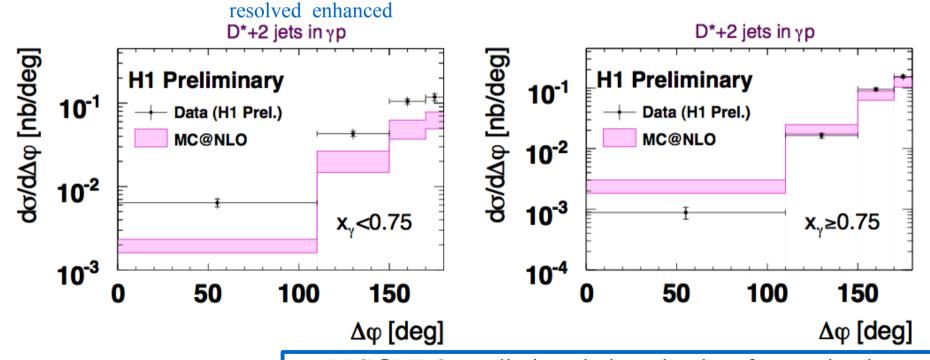
D*+2 jets in γp

H1 Preliminary — Data

Fit

0.13 0.14 0.15 0.16 0.17

Δ m=m(Kππ)-m(Kπ) [GeV]


• Azimutal correlation between the two jets, $\Delta\Phi$:

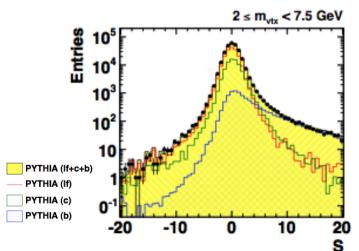
• Fraction of the photon energy entering the hard interaction (direct vs resolved), x_y^{obs} :

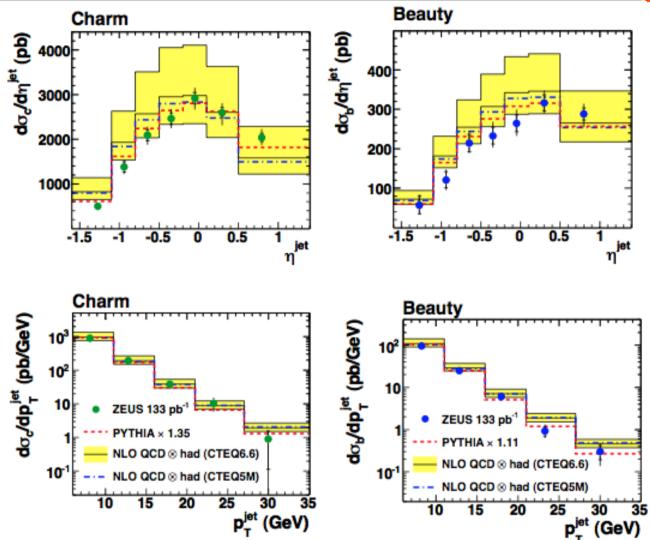
$$x_{\gamma}^{obs} = \frac{\sum_{Jet1} (E - p_z) + \sum_{Jet2} (E - p_z)}{\sum_{h} (E - p_z)}$$

Charm tagging

D* meson reconstruction via: $D^{*\pm} \to D^0 \pi^{\pm}_{slow} \to K^{\mp} \pi^{\pm} \pi^{\pm}_{slow}$

• MC@NLO predictions below the data for resolved photons, direct contribution reasonably well-described




Data sample: £=130 pb⁻¹

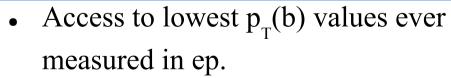
Phase Space Events with least 2 jets with: $p_T^{\text{jet }1(2)} > 7$ (6) GeV

Heavy Quark tagging Reconstruction of secondary vertices:

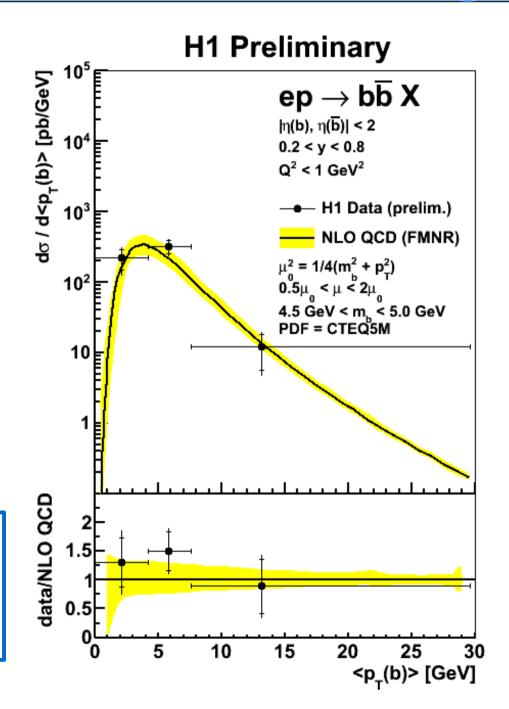
- Decay length significance $S = DL / \sigma(DL)$
- Mass of tracks associated with the secondary vertex, m_{vtx}

- Simultaneous measurement of c and b at large $p_{_{\rm T}}$.
- Good agreement with LO MC (Pythia, scaled) and NLO QCD calculation (FMNR).

Beauty in photoproduction at low $p_{T}(b)$

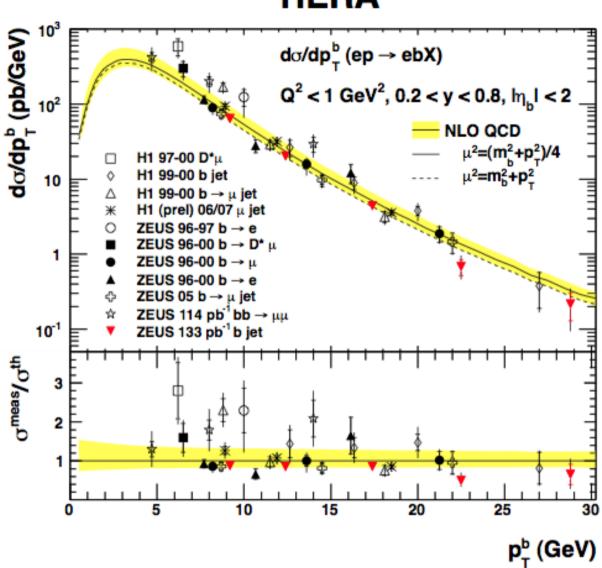

Data sample: $\mathcal{L}=46 \text{ pb}^{-1}$

Phase Space Events with 2 low p_T -electrons with $1 \text{ GeV}^2 < p_T^e < 5 \text{ GeV}^2$


Beauty tagging

Two low $p_{_{\rm T}}$ electrons from semileptonic decays:

• Invariant di-electron mass times di-electron charge product: m_{ee}*q(e1)*q(e2)

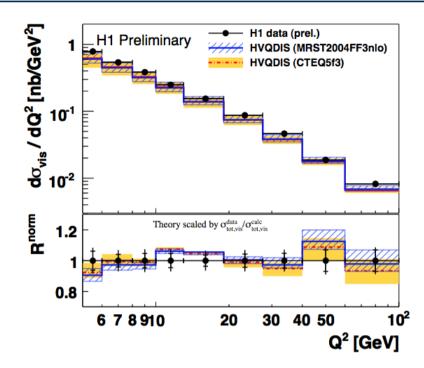

• Agreement between data and NLO calculation (FMNR).

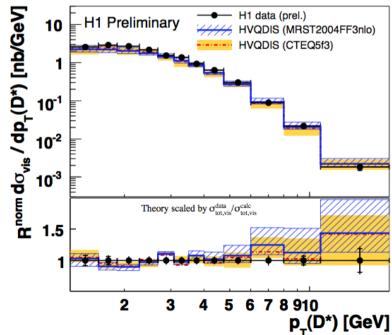
- Many measurements confirming each over a wide $p_{T}(b)$ range.
- General good agreement between data and NLO calculation (FMNR).

Charm and beauty in deep inelastic scattering

D* production at low Q² in DIS

Data Sample: $\mathcal{L}=350 \text{ pb}^{-1}$


Phase Space

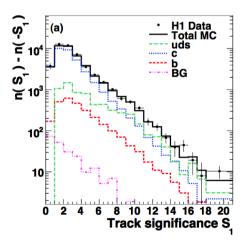

$$5 \text{GeV}^2 < Q^2 < 100 \text{ GeV}^2$$

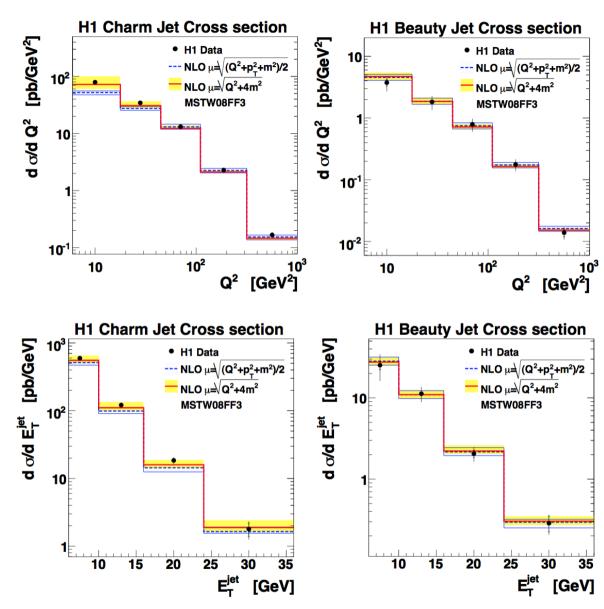
 $p_T^{D^*} > 1.25 \text{ GeV}$
 $|\eta^{D^*}| < 1.8$

Charm tagging
Reconstruction of a D* meson decaying in the golden channel:

$$D^{*\pm} \to D^0 \pi^{\pm}_{slow} \to K^{\mp} \pi^{\pm} \pi^{\pm}_{slow}$$

General good agreement with NLO calculations over a wide range in p_T(D*) and Q².

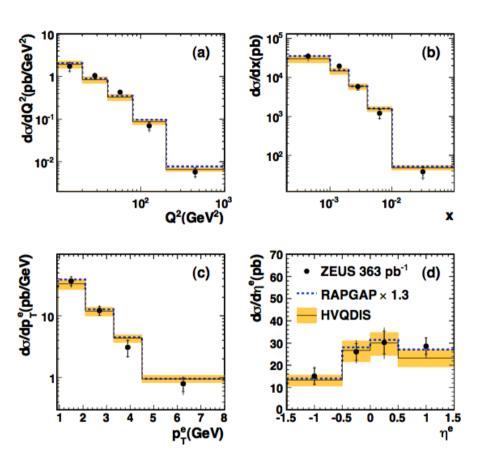

Heavy Flavour Production at HERA



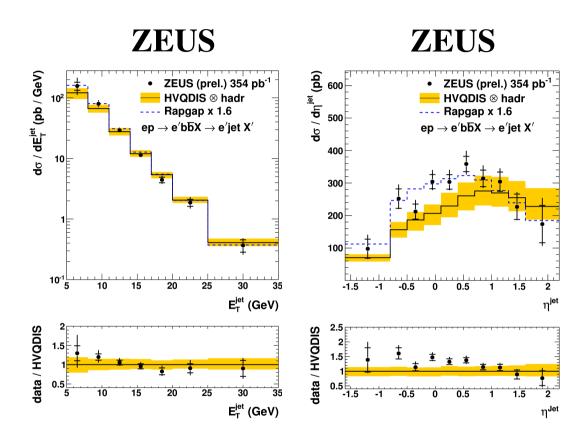
Data Sample: £=189 pb⁻¹

Phase Space $6 \text{GeV}^2 < Q^2$, 0.07 < y < 0.625 At least on jets with: $E_T^{\text{jet}} > 6 \text{ GeV}$, $-1 < \eta^{\text{jet}} < 1.5$

Heavy Quark tagging Reconstruction of secondary vertex. Displaced tracks.

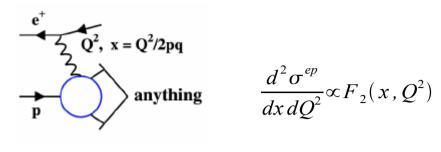


• Charm and Beauty in good agreement with NLO.


Beauty production in DIS

• Exclusive: $b \rightarrow e$

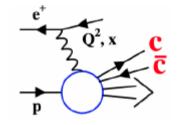
• Inclusive measurement:



• Good agreement between data and NLO QCD calculation (HVQDIS) observed in different kinematical regions.

F₂ bb and F₂ contributions to the proton structure function F₂

F₂ structure function of the proton:


$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\,\alpha^2}{x\,Q^4} \cdot \left[(1 + (1-y)^2)F_2 - y^2F_L \right]$$

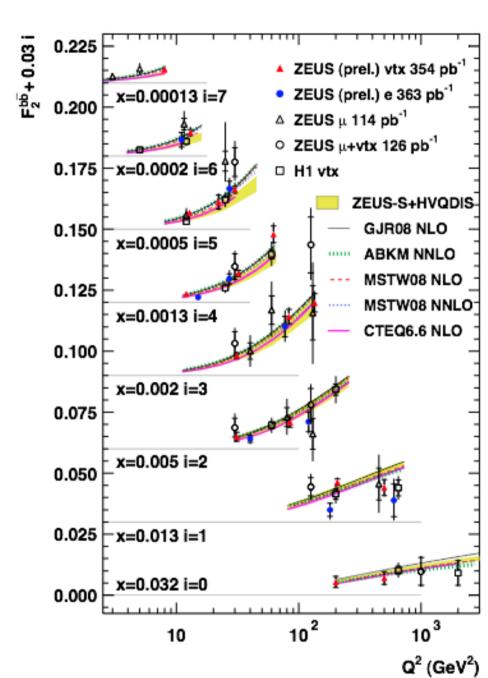
$$\frac{d^2\sigma^{ep}}{dx\,dQ^2} \propto F_2(x,Q^2)$$

• F_2^{cc} structure function of the proton: (identical for F₂^{bb})

$$\frac{d^2 \sigma^{c\bar{c}}}{dx dQ^2} = \frac{2\pi \alpha^2}{x Q^4} \cdot \left[(1 + (1 - y)^2) F_2^{c\bar{c}} - y^2 F_L \right]$$

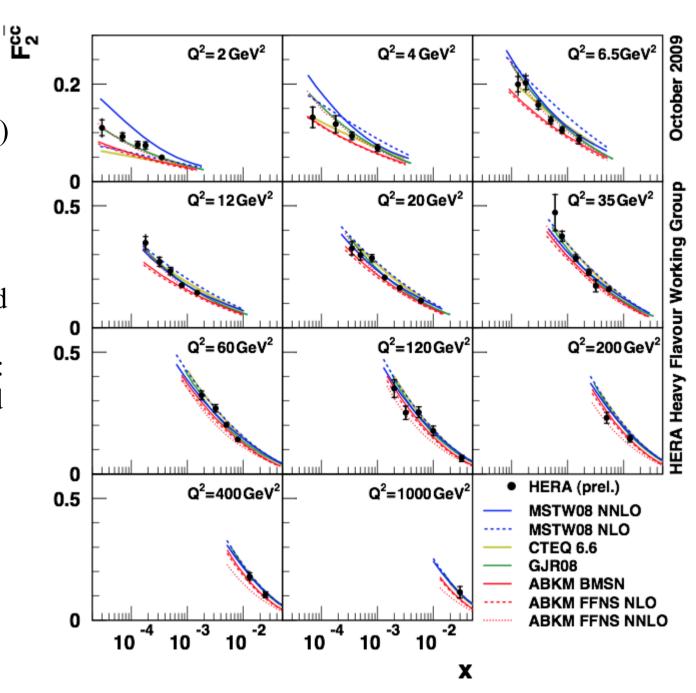
$$\frac{\mathbf{Q}^{2}, \mathbf{x}}{\mathbf{\bar{c}}} \qquad \frac{d^{2} \sigma^{ep \to c \bar{c} x}}{dx dQ^{2}} \propto F_{2}^{c \bar{c}}(x, Q^{2})$$

The good agreement of the data and NLO calculations in the visible phase (given by the heavy quark tagging) allow to extrapolate to the full phase space and to measure F_2^{cc} (and identical F_2^{bb}):


$$F_2^{c\tau, meas}(x, Q^2) = \sigma_{vis, bin}^{meas} \frac{F_2^{c\tau, model}(x, Q^2)}{\sigma_{vis, bin}^{model}}$$

- Summary of H1 and ZEUS F₂^{bb} measurements.
- Comparison with different pQCD predictions.

- Data are compatible within uncertainties.
- NLO predictions able to describe the data.



Combination of all charm measurements at HERA to common (x,Q²) points allow highest precision in the data.

Comparison to different pQCD predictions, based on independent PDFs give a consistent picture:

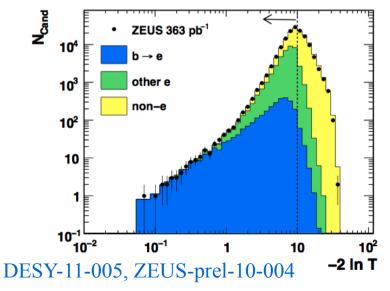
> The data can be used to further constrain the gluon density.

H1prelim-09-171, ZEUS-prel-09-015

Summary

- Heavy flavour production at HERA allows to test QCD at different scales.
- The heavy flavor measurements of ZEUS and H1 using different experimental techniques and having different systematics are in good agreement.
- The data is in general in a good agreement with NLO pQCD predictions.

Beauty production in DIS

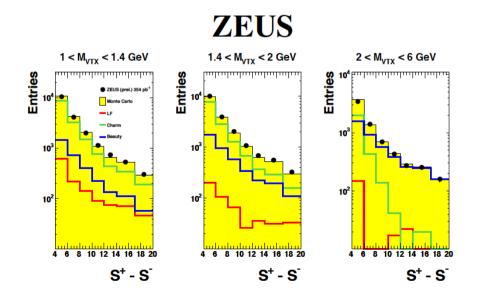


• Exclusive: $b \rightarrow e$

Phase Space $10 \text{ GeV}^2 < Q^2$ Events with a jet and an electron with: $0.9 \text{ GeV}^2 < p_{_{\rm T}}^{\ e} < 8 \text{ GeV}^2$

Heavy Quark tagging: Semileptonic decays Likelihood test function T based on:

- Decay length significance
- p_{T} of electrons w.r.t. Jet
- $\Delta \Phi$ between $p_{_T}^{_{miss}}$ and electron


Inclusive measurement.

Phase Space $5 \text{GeV}^2 < Q^2 < 1000 \text{GeV}^2$, 0.02 < y < 0.7 Events with least 2 jets with: $E_T^{\text{jet}} > 5 \text{ GeV}$

Heavy Quark tagging:

Reconstruction of secondary vertices:

- Decay length significance
- Mass of tracks associated with the secondary vertex, m_{vtx}

