Lepton Flavour Violation

(Theoretical Aspects)

Thorsten Feldmann

Beauty 2011, Amsterdam, 8 April 2011

Outline

Lepton Flavour Violation (bottom-up)

- Minimal Extensions of the SM Lepton Sector
- Minimal LFV
- LFV Observables
- LFV Phenomenology in Specific Models (top-down)
 - LFV in SUSY Models
 - Littlest Higgs Model with T-parity (LHT)
 - A sequential 4th Lepton Generation

A comprehensive review can be found in:

 M. Raidal *et al.*, "Flavour physics of leptons and dipole moments", Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826 [hep-ph]].

Motivation

Neutrino oscillations:

- Neutrino oscillations experimentally established (\rightarrow also implies LFV).
- Natural relation to New Physics from GUTs.
 - See-saw scale \sim GUT scale \sim scale of Lepton *Number* Violation (LNV).
 - Right-handed neutrino ν_R fits into 16-plet of SO(10).
- Implications for Baryogenesis through Leptogenesis.

LNV \Leftrightarrow New Physics at the GUT scale?

Lepton Flavour Violation (LFV = in charged lepton decays):

- LFV violating effects tiny in minimally extended SM (← GIM mechanism): (e.g. B[μ → eγ]_{SM} ~ 10⁻⁵⁴] compared to B[μ → eγ]_{exp.} < 10⁻¹¹⁽¹³⁾)
- New sources for Lepton-Flavour Violation in generic NP models:

LFV \Leftrightarrow NP at the TeV scale?

Motivation

Neutrino oscillations:

- Neutrino oscillations experimentally established (\rightarrow also implies LFV).
- Natural relation to New Physics from GUTs.
 - See-saw scale \sim GUT scale \sim scale of Lepton *Number* Violation (LNV).
 - Right-handed neutrino ν_R fits into 16-plet of SO(10).
- Implications for Baryogenesis through Leptogenesis.

LNV \Leftrightarrow New Physics at the GUT scale?

Lepton Flavour Violation (LFV = in charged lepton decays):

- LFV violating effects tiny in minimally extended SM (\leftarrow GIM mechanism): (e.g. $\mathcal{B}[\mu \rightarrow e\gamma]_{SM} \sim 10^{-54}$] compared to $\mathcal{B}[\mu \rightarrow e\gamma]_{exp.} < 10^{-11(13)}$)
- New sources for Lepton-Flavour Violation in generic NP models:

LFV \Leftrightarrow NP at the TeV scale?

- 1.1 Minimal Extensions of the SM Lepton Sector
 - Yukawa sector in the (original) SM:

 $(Y_E)^{ij} (\overline{L}^i H) E_R^j + \text{h.c.}$

- massless (anti-) neutrinos with (positive) negative helicity
- individual lepton flavour (L_e, L_μ, L_τ) conserved \rightarrow No Mixing
- SM plus right-handed <u>Dirac</u> Neutrinos (i.e. LN-conservation enforced):

 $(Y_E)^{ij} (\overline{L}^i H) E_R^j + (Y_\nu)^{ij} (\overline{L}^i \widetilde{H}) \nu_R^j + \text{h.c.}$

- analogous to quark sector (CKM-like mixing)
- phenomenologically and theoretically less interesting
- Minimally extended SM (as Effective Theory):

$$(Y_E)^{ij} (\overline{L}^i H) E_R^j + \frac{(g_\nu)^{ij}}{\Lambda_{\text{LNV}}} (\overline{L}^i \widetilde{H}) (\widetilde{H}^{\dagger} L^j)^c + \text{h.c.}$$

- effective dim-5 operator \rightarrow LNV.
- mismatch between diagonalization of Y_E and $g_{\nu} = g_{\nu}^T$ gives PMNS mixing matrix.

1.1 Minimal Extensions of the SM Lepton Sector

• SM plus right-handed Majorana Neutrinos:

$$(Y_{E})^{ij} (\bar{L}^{i} H E_{R}^{j}) + (Y_{\nu})^{ij} (\bar{L}^{i} \tilde{H} \nu_{R}^{j}) + \frac{1}{2} M^{ij} (\nu_{R}^{T})^{i} (\nu_{R})^{j} + \text{h.c.}$$

• Majorana mass term \rightarrow LNV.

Integrating out ν_R , yields dim-5 operator with

$$\frac{g_{\nu}}{\Lambda_{\text{LNV}}} = Y_{\nu} (M)^{-1} Y_{\nu}^{T} \qquad \text{(type-I see-saw)}$$

- Alternatively:
 - Additional heavy scalar triplets (type-II see-saw)
 - Additional heavy fermion triplets (type-III see-saw)
 - ► Additional *light* sterile neutrinos (→ LSND)

▶ ...

Idea:

- SM as Effective Theory (incl. LN-violating dim-5 operator).
- New dim \geq 6 operators:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda_{\mathrm{LNV}}} O^{\mathrm{dim}-5} + rac{1}{\Lambda_{\mathrm{LFV}}^2} O^{\mathrm{dim}-6} + \dots$$

with independent scales, $\Lambda_{LFV} \ll \Lambda_{LNV}$

• e.g. allowing for generic coupling constants for effective operators like

$$\frac{1}{\Lambda_{\rm LFV}^2} \, \bar{L}^i \, \sigma^{\mu\nu} \, H \, E_R^j \, F_{\mu\nu} \, ,$$

the bound on $\mu \rightarrow e \gamma$ would imply $\Lambda_{\rm LFV} > 10^5$ TeV.

- ⇒ Allowing for NP at the TeV scale requires specifically tuned LFV coefficients.
- Expand NP flavour matrices in terms of Y_E and g_{ν} (with $\mathcal{O}(1)$ coefficients):
- ⇒ NP flavour coefficients related to SM masses and mixing angles.

Formulation of MLFV from Flavour Symmetry Considerations

Lepton-flavour symmetry in (gauge sector of) minimally extended SM: $SU(3)_L \times SU(3)_{E_R}$

Broken by flavour matrices (in the mass eigenbasis for charged leptons):

Dim-5:
$$g_{\nu} \sim (\bar{\mathbf{6}}, \mathbf{1}) = \frac{\Lambda_{\text{LNV}}}{\nu^2} U^* \operatorname{diag}[m_{\nu_l}] U^{\dagger}$$

Yukawa: $Y_E \sim (\mathbf{3}, \bar{\mathbf{3}}) = \frac{1}{\nu} \operatorname{diag}[m_\ell]$

with PMNS mixing matrix U.

• For the construction of MLFV operators, one needs

 $\Delta_j^i = (g_\nu^\dagger g_\nu)_j^i - \frac{1}{3} \delta_j^i \operatorname{tr}[g_\nu^\dagger g_\nu] \quad \text{and} \quad G_{ij}^{kl} = (g_\nu)_{ij} (g_\nu^*)^{kl} - [\operatorname{trace terms}]$

appearing as the 8-tet and 27-plet in $\overline{6} \times 6 = 1 + 8 + 27$.

Leading LFV effect proportional to $\frac{\Delta m_{\text{atr}}^2}{v^2}$

$$\frac{\Delta m_{\rm atm}^2}{v^2} \frac{\Lambda_{\rm LNV}}{\Lambda_{\rm LFV}}$$

(can be singled out by using a non-linear representation of MLFV. [TF/Mannel, arXiv:0806.0717])

Dim-6 LFV Operators

• Dim-6 LFV operators in the minimally extended SM + M(L)EV

$$\begin{split} O^{(1)}_{LL} &= \quad (\bar{L}_i \gamma^{\mu} L^i) \; H^{\dagger} i D_{\mu} H \,, \\ O^{(2)}_{LL} &= \quad (\bar{L}_i \gamma^{\mu} \tau^a L^j) \; H^{\dagger} \tau^a i D_{\mu} H \,, \\ O^{(3)}_{LL} &= \quad (\bar{L}_i \gamma^{\mu} L^j) \; (\bar{Q}_L \gamma_{\mu} Q_L) \,, \\ O^{(4d)}_{LL} &= \quad (\bar{L}_i \gamma^{\mu} L^j) \; (\bar{D}_R \gamma_{\mu} D_R) \,, \\ O^{(4u)}_{LL} &= \quad (\bar{L}_i \gamma^{\mu} L^j) \; (\bar{U}_R \gamma_{\mu} U_R) \,, \\ O^{(5)}_{LL} &= \quad (\bar{L}_i \gamma^{\mu} \tau^a L^j) \; (\bar{Q}_L \gamma_{\mu} \tau^a Q_L) \,. \end{split}$$

for 2-lepton processes, and

 $O^{(4)}_{LLRR} = \triangle \left[\left(\bar{L}_i \gamma^{\mu} L^j \right) \left(\bar{E}_R \gamma_{\mu} E_R \right) \right],$

for 4-lepton processes.

$$\begin{split} & O_{RL}^{(1)} = g' H^{\dagger} \left(\bar{E}_{Ri} \sigma^{\mu\nu} L^{j} \right) B_{\mu\nu} \,, \\ & O_{RL}^{(2)} = g H^{\dagger} \left(\bar{E}_{Ri} \sigma^{\mu\nu} \tau^{a} L^{j} \right) W_{\mu\nu}^{a} \,, \\ & O_{RL}^{(3)} = (D_{\mu} H)^{\dagger} \left(\bar{E}_{Ri} D_{\mu} L^{j} \right) , \\ & O_{RL}^{(4)} = (\bar{E}_{Ri} L^{j}) \left(\bar{Q}_{L} \bigtriangledown D_{R} \right) , \\ & O_{RL}^{(5)} = (\bar{E}_{Ri} \sigma^{\mu\nu} L^{j}) \left(\bar{Q}_{L} \sigma_{\mu\nu} \bigtriangledown D_{R} \right) , \\ & O_{RL}^{(6)} = (\bar{E}_{Ri} L^{j}) \left(\bar{U}_{R} \land i\tau^{2} Q_{L} \right) , \\ & O_{RL}^{(7)} = (\bar{E}_{Ri} \sigma^{\mu\nu} L^{j}) \left(\bar{U}_{R} \sigma_{\mu\nu} \checkmark i\tau^{2} Q_{L} \right) . \end{split}$$

$$\begin{split} \mathcal{O}_{LLLL}^{(3)} &= \left(\vec{L}_{i} \gamma^{\mu} L^{i} \right) \left(\vec{L}_{k} \gamma_{\mu} L^{i} \right), \\ \mathcal{O}_{LLLL}^{(5)} &= \left(\vec{L}_{i} \gamma^{\mu} \tau^{a} L^{i} \right) \left(\vec{L}_{k} \gamma_{\mu} \tau^{a} L^{i} \right) \end{split}$$

[Cirigliano et al, hep-ph/0507001], [Dassinger/TF/Mannel/Turczyk, arXiv:0707.0988]

Dim-6 LFV Operators

• Dim-6 LFV operators in the minimally extended SM + M(L)FV (linear in y_i)

$$\begin{split} O^{(1)}_{LL} &= \Delta^i_j \left(\bar{L}_i \gamma^\mu L^j \right) H^\dagger i D_\mu H \,, \\ O^{(2)}_{LL} &= \Delta^i_j \left(\bar{L}_i \gamma^\mu \tau^a L^j \right) H^\dagger \tau^a i D_\mu H \,, \\ O^{(3)}_{LL} &= \Delta^i_j \left(\bar{L}_i \gamma^\mu L^j \right) \left(\bar{Q}_L \gamma_\mu Q_L \right) \,, \\ O^{(4d)}_{LL} &= \Delta^i_j \left(\bar{L}_i \gamma^\mu L^j \right) \left(\bar{D}_R \gamma_\mu D_R \right) \,, \\ O^{(4u)}_{LL} &= \Delta^i_j \left(\bar{L}_i \gamma^\mu L^j \right) \left(\bar{U}_R \gamma_\mu U_R \right) \,, \\ O^{(5)}_{LL} &= \Delta^i_j \left(\bar{L}_i \gamma^\mu \tau^a L^j \right) \left(\bar{Q}_L \gamma_\mu \tau^a Q_L \right) \,. \end{split}$$

for 2-lepton processes, and

 $O^{(4)}_{LLRR} = \Delta^i_j \left(\bar{L}_i \gamma^{\mu} L^j \right) \left(\bar{E}_R \gamma_{\mu} E_R \right),$

for 4-lepton processes.

$$\begin{split} &O_{RL}^{(1)} = \left(Y_E^{\dagger}\Delta\right)_j^i g' H^{\dagger} \left(\bar{E}_{Ri}\sigma^{\mu\nu}L^j\right) B_{\mu\nu} \,, \\ &O_{RL}^{(2)} = \left(Y_E^{\dagger}\Delta\right)_j^i g H^{\dagger} \left(\bar{E}_{Ri}\sigma^{\mu\nu}\tau^a L^j\right) W_{\mu\nu}^a \,, \\ &O_{RL}^{(3)} = \left(Y_E^{\dagger}\Delta\right)_j^i \left(D_{\mu}H\right)^{\dagger} \left(\bar{E}_{Ri}D_{\mu}L^j\right) \,, \\ &O_{RL}^{(4)} = \left(Y_E^{\dagger}\Delta\right)_j^i \left(\bar{E}_{Ri}L^j\right) \left(\bar{Q}_L Y_D D_R\right) \,, \\ &O_{RL}^{(5)} = \left(Y_E^{\dagger}\Delta\right)_j^i \left(\bar{E}_{Ri}\sigma^{\mu\nu}L^j\right) \left(\bar{Q}_L \sigma_{\mu\nu}Y_D D_R\right) \,, \\ &O_{RL}^{(6)} = \left(Y_E^{\dagger}\Delta\right)_j^i \left(\bar{E}_{Ri}L^j\right) \left(\bar{U}_R Y_U^{\dagger}i\tau^2 Q_L\right) \,, \\ &O_{RL}^{(7)} = \left(Y_E^{\dagger}\Delta\right)_j^i \left(\bar{E}_{Ri}\sigma^{\mu\nu}L^j\right) \left(\bar{U}_R \sigma_{\mu\nu}Y_U^{\dagger}i\tau^2 Q_L\right) \,. \end{split}$$

$$\begin{split} \mathcal{O}^{(3)}_{LLLL} &= \left(\Delta^i_{l} \delta^{kl} + \mathbf{c} \; G^{kl}_{jl} \right) \left(\bar{L}_l \gamma^{\mu} L^l \right) \left(\bar{L}_k \gamma_{\mu} L^l \right), \\ \mathcal{O}^{(5)}_{LLLL} &= \left(\Delta^i_{l} \delta^{kl} + \mathbf{c}' \; G^{kl}_{jl} \right) \left(\bar{L}_i \gamma^{\mu} \tau^{\mathfrak{a}} L^l \right) \left(\bar{L}_k \gamma_{\mu} \tau^{\mathfrak{a}} L^l \right) \end{split}$$

[Cirigliano et al, hep-ph/0507001], [Dassinger/TF/Mannel/Turczyk, arXiv:0707.0988]

MLFV Phenomenology (example, minimal field content)

- LFV decay rates are sizeable, only if $\Lambda_{LNV} \gg \Lambda_{LFV}$, Example: $\mathcal{B}(\mu \to e\gamma) > 10^{-13}$ requires $\Lambda_{LNV} > 10^9 \cdot \Lambda_{LFV}$.
- Λ_{LNV} drops out in *ratios* of LFV decays, e.g. $\mathcal{B}(\mu \to e\gamma)/\mathcal{B}(\tau \to \mu\gamma)$

 \Rightarrow Better experimental prospects to observe $\mu \rightarrow e\gamma$ than $\tau \rightarrow \mu\gamma$.

 Alternative realizations of MLFV within see-saw constructions possible, see e.g. [Alonso et al. 11, Gavela et al. 09, Branco et al. 07, Davidson et al. 06] 1.3 LFV Observables \leftrightarrow Flavour Coefficients of Effective Operators

- Radiative decays $(\mu \rightarrow e\gamma, \tau \rightarrow \mu(e)\gamma)$
- Decay to 3 charged leptons $(\mu \rightarrow 3e, \tau \rightarrow 3\mu, \text{ etc.})$
 - Different chiralities involved, including dipole operator with virtual photon.
 - Full-fledged analysis requires careful treatment of phase space.

also: Hadronic Decays, μ-e Conversion in Nuclei

Experimental Situation summarized in Talk by George Lafferty

2. LFV Phenomenology in Specific Models (top-down)

In some detail:

- (constrained) SUSY Models
- Littlest Higgs Model with T-Parity
- Sequential 4th Lepton Generation

Other (recently discussed) extensions:

- "Simplest Higgs model" [del Aguila et al. 11] (qualitatively similar results as for LHT)
- ► "AMEND" (neutrinos ↔ dark matter) [Farzan/Pascoli/Schmidt 10]
- ► Non-universal Z' [Mohanta 10]
- Higgs-triplet model [Akeroyd et al. 09]
- More results in review [Raidal et al. 08]

Generic Questions:

- Tree-level or loop-induced LFV ?
- Deviations from MLFV ?
- Comparison with present/foreseen experimental bounds ?
- Constraints on new sources of flavour violation, new-particle masses ?

• Correlations, e.g.
$$\tau \rightarrow \mu(e)\gamma$$
 vs. $\mu \rightarrow e\gamma$?

• ...

2.1 LFV in SUSY Models

- Generic MSSM: \rightarrow mass insertion approximation. (off-diagonal slepton masses)
- Specific SUSY-breaking scenarios with universal slepton parameters + RG.
- Additional constraints from (discrete) flavour symmetries.
- Specific assumptions on see-saw parameters.

• . . .

(a): Constrained MSSM with Type-I See-Saw

Set-up:

- cMSSM + 3 right-handed (s)neutrinos,
- hierarchical spectrum for heavy neutrinos,
- include constraints from baryogenesis through leptogenesis,

- \Rightarrow LFV originates from Neutrino Yukawa Matrices:
 - Consider certain SPS benchmark points,
 - Study dependence on neutrino mixing angle θ_{13}
 - also: Heavy Majorana masses and mixing angles.

Correlation between $\mu \rightarrow \boldsymbol{e}\gamma$ and $\tau \rightarrow \mu\gamma$

• as a function of θ_{13} and the heaviest Majorana mass M_{N_3} , for SPS 1A.

(for more on SUSY see-saw and LFV, see [J.C. Romao, talk at Moriond '11])

(a): Constrained MSSM with Type-I See-Saw

[Antusch et al. 06]

 $\mu(\tau) \rightarrow e\gamma$ and $\mu(\tau) \rightarrow 3e$ for different SPS points

 $B(\mu \rightarrow e \gamma)$ and $B(\mu \rightarrow 3 e)$ as a function of θ_{13} , for SPS 1a (·), SPS 1b (+), SPS 2 (*), SPS 3 (\triangle), SPS 4 (\odot) and 5 (\times).

Th. Feldmann (IPPP Durham)

(b): Higgs-Mediated LFV in SUSY

[Paradisi 06]

• "Non-decoupling limit": $sin(\beta - \alpha) = 0$, $tan \beta \gg 1$

(b): Higgs-Mediated LFV in SUSY

[Paradisi 06]

• "Decoupling limit": $\cos(\beta - \alpha) = 0$, $m_Z/m_A \rightarrow 0$ (2-loop effects important)

[Feruglio et al. arXiv:0911.3874]

Motivation:

- Use specific symmetry group $(A_4 \times Z_3 \times U(1)_{FN})$ to enforce near tri-bi-maximal neutrino mixing
- Implement into softly-broken SUSY context to realize NP at the TeV scale

Relevant Parameters:

• Small expansion parameter classifying the breaking of the A₄ symmetry

$$u=rac{\langle \phi_i
angle}{\Lambda_f}\sim (0.01-0.05)\sim heta_{13}$$

• Froggatt-Nielsen mechanism to explain the hierarchies of y_{ℓ} , parametrized by

$$t=rac{\langle heta_{FN}
angle}{\Lambda_f}\sim 0.05$$

- Ratio of Higgs VEVs restricted to small values: $2 \le \tan \beta \le 15$
- SUSY mass parameters m₀ and m_{1/2}

[Feruglio et al. arXiv:0911.3874]

Essential Features:

- (right-handed) Slepton masses non-universal at flavour-symmetry breaking scale Λ_f.
- The ratios

$$\mathsf{R}_{ij} = rac{\mathcal{B}(\ell_i o \ell_j \gamma)}{\mathcal{B}(\ell_i o \ell_j
u_i ar{
u}_j)}$$

are approximately universal, $R_{\mu e} \approx R_{\tau \mu} \approx R_{\tau e}$.

 \Rightarrow With the limit on $R_{\mu e}$, the decay $\tau \rightarrow \mu \gamma$ is not observable in the foreseeable future.

Experimental Constraints \Rightarrow

- ► small flavour-symmetry breaking parameter u ~ 0.01,
- and/or small tan β,
- and/or large SUSY mass parameters (above 1 TeV).

[Feruglio et al. arXiv:0911.3874]

 $BR(\mu \rightarrow e\gamma)$ as a function of $m_{1/2}$, for different values of tan β , u and m_0 . The red points correspond to the mass of the lightest chargino being below the limit coming from direct searches. The horizontal lines show the current MEGA bound (continuous line) and the prospective MEG bound (dashed line).

[Feruglio et al. arXiv:0911.3874]

 $BR(\mu \rightarrow e\gamma)$ as a function of $m_{1/2}$, for different values of tan β , u and m_0 . The red points correspond to the mass of the lightest chargino being below the limit coming from direct searches. The horizontal lines show the current MEGA bound (continuous line) and the prospective MEG bound (dashed line).

[Feruglio et al. arXiv:0911.3874]

 $BR(\mu \rightarrow e\gamma)$ as a function of $m_{1/2}$, for different values of tan β , u and m_0 . The red points correspond to the mass of the lightest chargino being below the limit coming from direct searches. The horizontal lines show the current MEGA bound (continuous line) and the prospective MEG bound (dashed line).

2.2 Littlest Higgs Model with *T*-parity (LHT)

[Low; Hubisz et al; Aquila et al; Blanke et al; Deandrea et al; Goto et al; ... 2004++]

General features:

• New Heavy Gauge Bosons (W_H^{\pm} , Z_H , A_H ; detectable at the LHC).

• New Heavy Mirror Leptons $\begin{pmatrix} \nu'_H \\ \ell'_H \end{pmatrix}$ with masses of order TeV (and also quarks).

2.2 Littlest Higgs Model with *T*-parity (LHT)

[Low; Hubisz et al; Aquila et al; Blanke et al; Deandrea et al; Goto et al; ... 2004++]

Input parameters:

- LHT scale parameter: f
- mirror lepton masses: M_{H1}^{ℓ} , M_{H1}^{ℓ} , M_{H1}^{ℓ}
- mirror-lepton mixing angles: θ_{12}^{ℓ} , θ_{23}^{ℓ} , θ_{13}^{ℓ} ,

new (Dirac) phases: δ_{12}^{ℓ} , δ_{23}^{ℓ} , δ_{13}^{ℓ}

\rightarrow Potential LFV effects exceeding the SM by Many Orders of Magnitude.

- \rightarrow Experimental Constraints \Rightarrow Certain amount of Parameter Tuning:
 - either, somewhat large LHT scale parameter,
 - and/or small mirror-lepton mixing angles,
 - and/or degenerate mirror lepton masses.

LHT Correlations for LFV Decays and μ -e Conversion

[from Blanke et al. arXiv:0906.5454]

• f = 1 TeV

- 300 GeV $\leq M_{H_i}^{\ell} \leq 1.5$ TeV
- blue dots = dipole contribution from $\mu
 ightarrow e \gamma^*$

[for recent analysis, see also Y. Yamamoto: poster@BEAUTY2011]

2.3 A sequential 4th Lepton Generation (Dirac neutrinos)

- New heavy charged lepton τ' and (Dirac-)neutrino $\nu_{\tau'}$.
- 4×4 mixing matrix in the lepton sector U_{ij}

[Lacker/Menzel, arXiv:1003.4532]; [Buras et al, arXiv:1006.5356]

Radiative μ and τ decays:

$$\frac{\mathcal{B}(\tau \to \mu\gamma)}{\mathcal{B}(\mu \to e\gamma)} \simeq \left| \frac{U_{\tau4}}{U_{e4}} \right|^2 \mathcal{B}(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu) \\ \frac{\mathcal{B}(\tau \to \mu\gamma)}{\mathcal{B}(\tau \to e\gamma)} \simeq \left| \frac{U_{\mu4}}{U_{e4}} \right|^2 \frac{\mathcal{B}(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu)}{\mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e)} \approx \left| \frac{U_{\mu4}}{U_{e4}} \right|^2 \\ \frac{\mathcal{B}(\tau \to e\gamma)}{\mathcal{B}(\mu \to e\gamma)} \simeq \left| \frac{U_{\tau4}}{U_{\mu4}} \right|^2 \mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e)$$

stringent constraints on |U_{i4}| elements, independent of heavy neutrino mass (!)

μ –*e* conversion in nuclei:

• conversion rate directly proportional to $|U_{e4}U_{\mu4}|^2$

4G Correlations for Radiative Decays and μ -*e* Conversion

[from Buras/Duling/TF/Heidsieck/Promberger 2010]

Correlations and comparison of 4G with LHT and MSSM

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	4G
$\frac{\mathcal{B}(\mu^- \to e^- e^+ e^-)}{\mathcal{B}(\mu \to e\gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$	0.06 2.2
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.07 2.2
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	0.06 0.1	0.06 2.2
$\frac{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	0.020.04	0.03 1.3
$\frac{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	0.04 1.4
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}$	0.82	~ 5	0.30.5	1.5 2.3
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	1.4 1.7
$\frac{R(\mu Ti \rightarrow eTi)}{\mathcal{B}(\mu \rightarrow e\gamma)}$	$10^{-3} \dots 10^{2}$	$\sim 5 \cdot 10^{-3}$	0.080.15	10 ⁻¹² 26

Comparison of various ratios of branching ratios in

- the LHT model [Blanke et al. 2009],
- the MSSM without significant Higgs contributions [Ellis et al. 2002], [Brignole/Rossi 2004],
- the MSSM with significant Higgs contributions [Paradisi 2005-6],
- the 4G model [Buras et al. 2010].

Summary

- LFV in the Neutrino Sector well established.
 (Natural relation to physics at the GUT scale.)
- LFV in Charged Lepton Transitions tiny in the SM.
- Many models for NP at the TeV Scale predict sizeable LFV.

If LFV (in charged lepton transitions) experimentally observed:

- Physics beyond the (minimally extended) SM.
- Correlations among Observables distinguish between NP Models.

If LFV experimentally further excluded:

- Exclusion of NP parameter space / NP models.
- Another case pointing to a Symmetry Principle in the Flavour Sector.

Backup Slides ...

Higgs-Mediated vs. Gaugino-mediated LFV in SUSY

[Paradisi 06]

 $\tan_{\beta} = 50 \text{ and } \delta_{LL}^{21} = 10^{-2}$

Maximal branching ratios for LFV τ decays in LHT model

decay	f = 1000 GeV	f = 500 GeV	SuperB sensitivity
$\tau \rightarrow e\gamma$	$8 \cdot 10^{-10}$	2 · 10 ⁻⁸	2 · 10 ⁻⁹
$\tau ightarrow \mu \gamma$	$8 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	2 · 10 ⁻⁹
$ au^- ightarrow e^- e^+ e^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-10}$
$\tau^- ightarrow \mu^- \mu^+ \mu^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-10}$
$ au^- ightarrow e^- \mu^+ \mu^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	
$ au^- o \mu^- {m e}^+ {m e}^-$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	
$ au^- ightarrow \mu^- e^+ \mu^-$	$6 \cdot 10^{-14}$	1 · 10 ⁻¹³	
$ au^- ightarrow {m e}^- \mu^+ {m e}^-$	$6 \cdot 10^{-14}$	1 · 10 ⁻¹³	
$\tau \rightarrow \mu \pi$	$4 \cdot 10^{-10}$	$5 \cdot 10^{-8}$	
$ au ightarrow oldsymbol{e} \pi$	$4 \cdot 10^{-10}$	$5 \cdot 10^{-8}$	
$\tau \rightarrow \mu \eta$	$2 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$4 \cdot 10^{-10}$
$ au ightarrow e\eta$	$2 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	$6 \cdot 10^{-10}$
$\tau \to \mu \eta'$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	
$ au ightarrow m{e}\eta'$	$1 \cdot 10^{-10}$	$2 \cdot 10^{-8}$	

Upper bounds on LFV τ decay branching ratios in the LHT model, for two different values of the scale *f*, after imposing the constraints on $\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$. For f = 500 GeV, also the bounds on $\tau \rightarrow \mu\pi$, $e\pi$ have been included.

[from Blanke et al. 2009]

Maximal branching ratios for selected decays in the 4G model:

decay	maximal value	exp. upper bound	
$\mu \rightarrow e\gamma$	$1.2 \cdot 10^{-11} (6.8 \cdot 10^{-12})$	$1.2 \cdot 10^{-11}$	
$\mu^- ightarrow e^- e^+ e^-$	$1.0 \cdot 10^{-12} (1 \cdot 10^{-12})$	$1.0 \cdot 10^{-12}$	
$R(\mu Ti ightarrow eTi)$	$6.6 \cdot 10^{-11}$ (5 $\cdot 10^{-12}$)	$4.3 \cdot 10^{-12}$	
$\tau \rightarrow e\gamma$	$3.9 \cdot 10^{-8} (3.9 \cdot 10^{-8})$	$3.3 \cdot 10^{-8}$	
$\tau ightarrow \mu \gamma$	$3.9 \cdot 10^{-8} (3.9 \cdot 10^{-8})$	$4.4 \cdot 10^{-8}$	
$ au^- ightarrow e^- e^+ e^-$	$7.5 \cdot 10^{-8} (7.5 \cdot 10^{-8})$	$2.7 \cdot 10^{-8}$	
$\tau^- \to \mu^- \mu^+ \mu^-$	$7.4 \cdot 10^{-8} (7.1 \cdot 10^{-8})$	$2.1 \cdot 10^{-8}$	
$\tau^- \rightarrow e^- \mu^+ \mu^-$	$5 \cdot 10^{-8}$ (5 \cdot 10^{-8})	$2.7 \cdot 10^{-8}$	
$ au^- ightarrow \mu^- e^+ e^-$	$5 \cdot 10^{-8}$ (5 \cdot 10^{-8})	1.8 · 10 ⁻⁸	
$\tau^- ightarrow \mu^- e^+ \mu^-$	$4.7 \cdot 10^{-17} (4.7 \cdot 10^{-17})$	$1.7 \cdot 10^{-8}$	
$ au^- ightarrow e^- \mu^+ e^-$	$4.9 \cdot 10^{-17} (4.9 \cdot 10^{-17})$	$1.5 \cdot 10^{-8}$	
$\tau \to \mu \pi$	$1.4 \cdot 10^{-7}$ $(1.4 \cdot 10^{-7})$	$5.8 \cdot 10^{-8}$	
$\tau \to \mu \eta$	$2.5 \cdot 10^{-8} (2.5 \cdot 10^{-8})$	$5.1 \cdot 10^{-8}$	
$\tau \to \mu \eta'$	$2.9 \cdot 10^{-10} (2.9 \cdot 10^{-8})$	$5.3 \cdot 10^{-8}$	

Maximal values for LFV decay branching ratios, after imposing the constraints on $\mathcal{B}(\mu \to e\gamma)$ and $\mathcal{B}(\mu^- \to e^-e^+e^-)$. The numbers given in brackets are obtained after imposing the additional constraint $R(\mu Ti \to eTi) < 5 \cdot 10^{-12}$. The current experimental upper bounds are also given.

[from Buras/Duling/TF/Heidsieck/Promberger 2010]