Flavour Visions: 2011

Andrzej J. Buras (Technical University Munich, TUM-IAS)

Beauty 2011 Amsterdam, Apr. 08th, 2011

Overture

A very important year for the humanity !

1676 : The Discovery of the Microuniverse (Animalcula) (The Empire of Bacteria)

Antoni van Leeuwenhoek *24.10.1632 \$\Prime 27.08.1723

> (Magnification by ~300)

Animalcula Hunters

Antoni van Leeuwenhoek *24.10.1632 \$\pm 27.08.1723

5

Lazzaro Spallanzani *12.01.1729 \$12.02.1799

Robert Koch *11.12.1843 **‡27.05.1910**

The Technology for the Microuniverse

Robert Koch *11.12.1843 **‡27.05.1910**

Technology to go beyond the Attouniverse

Most important Message from this Talk

Antoni van Leeuwenhook discovered in 1676

Animalcula

But how will these New Animalcula look like ?

But how will these New Animalcula look like ?

Overture Completed!

1 st

Movement

Movement

•

Beyond the SM (13 min)

2nd

Expectations and first Messages from New Animalcula (18 min)

1st Movement

•

Beyond the SM (13 min)

3rd Movement

- **Expectations and first Messages from New Animalcula (18 min)**
- : DNA Tests of Flavour Physics (2 min)

1st Movement

•

Beyond the SM (13 min)

3rd Movement

4th Movement

18 Amsterdam0411

Expectations and first Messages from New Animalcula (18 min)

- : DNA Tests of Flavour Physics (2 min)
- : Finale: Vivace ! (2 min)

(hep-ph/0910.1032): "Flavour Theory : 2009" (hep-ph/1012.1447): "MFV and Beyond"

1st Movement Beyond the SM

Fundamental Lagrangian of the Standard Model

$$L = L_{\text{gauge}} + L_{\text{fermion}} + L_{\text{Higgs}} + L_{\text{Yukawa}}$$

$$L_{\text{gauge}} = \underbrace{-\frac{1}{4}G^{a}_{\mu\nu}G^{a\,\mu\nu}}_{(\text{QCD})} \underbrace{-\frac{1}{4}W^{b}_{\mu\nu}W^{b\,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}}_{(\text{Electroweak})}$$

$$L_{\text{fermion}} = \sum_{f} \bar{\psi}_{fL} \left(i\gamma^{\mu}D^{fL}_{\mu}\right)\psi_{fL} + \bar{\psi}_{fR} \left(i\gamma^{\mu}D^{fR}_{\mu}\right)\psi_{fR}$$

$$L_{\text{Higgs}} = \left(D_{\mu}\varphi\right)^{\dagger} \left(D^{\mu}\varphi\right) - \left[\mu^{2}\varphi^{\dagger}\varphi + \frac{\lambda}{4}(\varphi^{\dagger}\varphi)^{2}\right]$$

$$L_{\text{Yukawa}} = -\sum_{f} \underbrace{V^{ij}}_{fL} \bar{\psi}^{i}_{fL} \varphi \psi^{j}_{fR} + \text{h.c.} \quad f = q, l$$

Standard Model of Strong and Electroweak Interactions

Low Energy Effective Quantum Field Theory based on (< 200 GeV)

$$SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y} \xrightarrow[broken]{} SU(3)_{C} \otimes U(1)_{QED}$$

which describes low energy phenomena in terms of 28 Parameters that have to be determined from experiment.

22 among these parameters are in the Flavour Sector !

Dirac Medal (2010)

N. Cabibbo (1935-2010)

M. Kobayashi

T. Maskawa

Crucial Question

What is the Origin of Particle Masses and the Reason for their Hierarchy and Hierarchy of their Flavour-Changing Interactions ? Which Dynamics could be responsible for the observedstructure ofElectroweak Symmetry Breakingand ofPatterns seen in Flavour Physics?

Could it be an elementary SM Higgs system with all problems of instability under radiative corrections (hierachy problems) ?

Crucial questions in Particle Physics

Could it be a new strong dynamics with a composite Higgs or without Higgs at all ?

Could this dynamics help us understanding matterantimatter asymmetry and the amount of dark matter in the universe ?

Would these dynamics explain anomalies in flavour physics ?

We need

in order to answer all these questions and solve all existing problems !

We need

in order to answer all these questions and solve all existing problems !

New Animalcula !!!

Complementary Methods to Search for New Physics

Quantum Fluctuations

(Limited by precision)

In Order to identify New Animalcula through Flavour Physics

We need

Many precision measurements of many observables and precise theory.

Study Patterns on Flavour Violation in various New Physics models (correlations between many flavour observables).

2

Master Formula for FCNC Amplitudes

Basic Questions for Flavour Physics

New Flavour violating CPV phases?

Flavour Conserving CPV phases?

Non-MFV Interactions?

(Non-CKM)

Right-Handed Charged Currents? Scalars H⁰, H[±] and related FCNC's?

New Fermions? New Gauge Bosons?

How to explain dynamically 22 free Parameters in the Flavour Sector ?
Superstars of 2011 – 2015 (Flavour Physics)

Dynamics of Two-Body Non-Leptonic B_s Decays in Correlation with B_d Decays

Dynamics of Two-Body Non-Leptonic B_s Decays in Correlation with B_d Decays

Magnificent Seven

M. Beneke

G. Buchalla

M. Neubert

C. Sachrajda

R. Fleischer

M. Gronau

J. Rosner

... and more Charm

... and more Charm

Ikaros Bigi

... and more Charm

Ikaros Bigi

(Rothschild / Mondavi Opus One Napa Valley 2005))

Big Superstars for 2011-2013

 $S_{\psi\phi}$

$$\mu \rightarrow e\gamma$$

Mixing induced CP Violation $(B_s^0 - \overline{B}_s^0)$

$$Br(B_{s,d} \rightarrow \mu^{+}\mu^{-})_{SM}$$

$$\cong 3.2 \cdot 10^{-9} (1 \cdot 10^{-10})$$

$$\begin{split} & Br(\mu \to e\gamma)_{SM} \\ &\cong 0 (10^{-54}) \end{split}$$

 $\left(\mathbf{S}_{\psi\phi}\right)_{\mathrm{SM}}\cong\mathbf{0.04}$

CP-conserving Quark-Flavour Violating

Lepton Flavour Violation

$$\left(\mathbf{S}_{\mathbf{\psi}\mathbf{K}_{\mathbf{S}}}\right)_{\mathbf{SM}}\cong\mathbf{0.80}$$

 $\begin{array}{l} \text{Mixing induced} \\ \text{CP Violation} \\ (B_d^0 - \overline{B}_d^0) \end{array}$

Precise prediction for ϵ_{K} (CP in $K_{L} \rightarrow \pi\pi$) and

Precise measurement of CKM phase

 $= \gamma$

2nd Novement

Expectations and First Messages from New Animalcula

Departures from Standard Model Expectations

$$\begin{split} & \left| \mathbf{CP}^{\mathsf{F}} \begin{cases} \mathbf{K}^{0} - \overline{\mathbf{K}}^{0} & (\boldsymbol{\epsilon}_{\mathrm{K}}) & \frac{\left| \boldsymbol{\epsilon}_{\mathrm{K}} \right|_{\mathrm{SM}}}{\left| \boldsymbol{\epsilon}_{\mathrm{K}} \right|_{\mathrm{exp}}} \approx 0.83 \pm 0.10 & (\mathrm{AJB}, \mathrm{Guadagnoli}) \\ & \mathbf{B}_{d}^{0} - \overline{\mathbf{B}}_{d}^{0} & (\mathbf{S}_{\psi \mathrm{K}_{s}}) & (\mathbf{S}_{\psi \mathrm{K}_{s}}) \cong \frac{0.80 \pm 0.04 & (\mathrm{SM}) & (\mathrm{UTfit})}{0.672 \pm 0.022 & (\mathrm{exp})} \\ & \mathbf{B}_{s}^{0} - \overline{\mathbf{B}}_{s}^{0} & (\mathbf{S}_{\psi \phi}) & \frac{\left(\mathbf{S}_{\psi \phi} \right)_{\mathrm{exp}}}{\left(\mathbf{S}_{\psi \phi} \right)_{\mathrm{SM}}} \approx 10 - 20 & (\mathrm{CDF}, \mathrm{D}\emptyset, \mathrm{Lenz+Nierste}) \\ & \frac{\mathrm{Br} \left(\mathbf{B}^{+} \rightarrow \tau^{+} \nu \right)_{\mathrm{exp}}}{\mathrm{Br} \left(\mathbf{B}^{+} \rightarrow \tau^{+} \nu \right)_{\mathrm{SM}}} \cong 2.2 \pm 0.5 & (\mathbf{S}_{\psi \phi})_{\mathrm{exp}} \approx 0.8 \frac{+0.1}{-0.2} \\ & \left| \mathbf{V}_{ub} \right| = \begin{cases} 4.5 \cdot 10^{-3} & \mathrm{Inclusive} \ \mathrm{Decays} & (\mathbf{B} \rightarrow \mathrm{X}_{u} \mathrm{I}\nu) \\ & \mathrm{and} \ \mathrm{SM} - \mathrm{CKM} \ \mathrm{fit} & \mathrm{SM} - \mathrm{GK} \mathrm{Inclusive} \mathrm{Inclusive}$$

Alexander Lenz & Ulrich Nierste Masters of $B_s^0 - \overline{B}_s^0$ Mixing

Possible Simplest Solutions

More on 2HDM with MFV and Flavour Blind Phases

Correlation between *CP* Effects

$$L_{Yukawa} : \frac{\theta_{d}^{H}}{\theta_{s}^{H}} \approx \frac{m_{d}}{m_{s}} \approx \frac{1}{17} BCGI$$

$$L_{Higgs} : \frac{\theta_{d}^{H}}{\theta_{s}^{H}} \approx \frac{1}{17}$$

Kagan, Perez, Volansky, Zupan Paradisi, Straub Dobrescu, Fox, Martin Blum, Hochberg, Nir Ligeti, Papucci, Perez, Zupan

More on 2HDM with MFV and Flavour Blind Phases

 $2HDM_{\overline{\rm MFV}}$

Models with non-MFV Interactions facing Large $S_{\psi\phi}$

Model Expectations

0.80 (4G) (Fourth Generation) (t') (Soni, Hou, Munich, Lenz)

0.75 (AC) (abelian flavour, SUSY) (Higgs penguin)

ABGPS

- $S_{\psi\phi} \leq \{0.50 \text{ (RVV)} \text{ (non-abelian flavour, SUSY) (Higgs penguin)} \}$
 - 0.75 (RS) (Heavy KK Gauge Bosons) (Duling et al (08))
 - 0.30 (LHT) (Mirror Fermions at work) (Tarantino et al (09))

$$(S_{\psi\phi})_{SM} \approx 0.04$$

ABGPS = Altmannshofer, AJB, Gori, Paradisi, Straub 0909.1333

55

$\mathbf{B}_{s,d} \rightarrow \mu^+ \mu^-$ in Various Models

Babu, Kolda (99),...+100

Muon Anomalous Magnetic Moment

$$g_{\mu}^{\text{exp}} = 2,002\,331\,841\,8$$

 $g_{\mu}^{\text{theory}} = 2,002\,331\,836\,7$
 $g_{\mu}^{\text{exp}} - g_{\mu}^{\text{theory}} = (51\pm16)\times10^{-10}$

$$\frac{\text{width of a hair}}{\text{Munich-Salzburg}} = \frac{0.1 \, mm}{100 \, km} = \frac{10^{-4} \, m}{10^5 \, m} = 10 \times 10^{-10}$$

Disagreement by 3σ

$$a_{\mu} = \frac{(g-2)_{\mu}}{2}$$
 Need $(\Delta a_{\mu})_{\frac{New}{Physics}} \approx (2-3) \cdot 10^{-9}$

4G has hard time to describe simultaneously ϵ'/ϵ and $S_{\psi\phi} > 0.2$ if $B_{6,8}$ within 20% from large N values

$$\begin{bmatrix}
 Br(B_d \to \mu^+\mu^-) vs Br(B_s \to \mu^+\mu^-)
 \end{bmatrix}
 4G$$

$$BDFHPR$$

$$b$$

Important Messages for

$$K \rightarrow \pi^+ \nu \overline{\nu}$$
 and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ Funs

These decays are very sensitive to New Animalcula ! (NP)

Absence of New Animalcula Effects in B-Physics will not preclude their discovery through $K \rightarrow \pi^+ \nu \overline{\nu}$ and $K_L \rightarrow \pi^0 \nu \overline{\nu}$.

63

В

Lepton Flavour Violation,
$$\Delta(g-2)_{\mu}$$
 and EDM's

(MEGA)
$$Br(\mu \rightarrow e\gamma) < 1.2 \cdot 10^{-11} \implies 10^{-13} (MEG) \text{ SM:} 10^{-54}$$

 $\left(a_{\mu}\right)_{SM} < \left(a_{\mu}\right)_{exp} (3.1\sigma)$
 $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$

(Regan et al) $d_{e} < 1.6 \cdot 10^{-27} \implies 10^{-31} (d_{e})_{SM} \approx 10^{-38}$
(Baker et al) $d_{n} < 2.9 \cdot 10^{-26} \implies 10^{-28} (d_{n})_{SM} \approx 10^{-32}$
[e cm]

Lepton Flavour Violation,
$$\Delta(g-2)_{\mu}$$
 and EDM's

(MEGA)
$$Br(\mu \rightarrow e\gamma) < 1.2 \cdot 10^{-11} \implies 10^{-13} (MEG) SM:10^{-54}$$

 $(a_{\mu})_{SM} < (a_{\mu})_{exp} (3.1\sigma)$
 $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$
(Regan et al) $d_{e} < 1.6 \cdot 10^{-27} \implies 10^{-31} (d_{e})_{SM} \approx 10^{-38}$
(Baker et al) $d_{n} < 2.9 \cdot 10^{-26} \implies 10^{-28} (d_{n})_{SM} \approx 10^{-32}$
 $fe cm$
 $MEG: Br(\mu \rightarrow e\gamma) = O(10^{-12})$ Rumours

Correlations in the SU(3) Flavour SUSY Model (RVV)

Correlations within SUSY-SU(5)-GUT with RH Neutrinos

AJB, Nagai, Paradisi, 1011.1993

Correlations within SUSY-SU(5)-GUT with RH Neutrinos

AJB, Nagai, Paradisi, 1011.1993

BANCEMENT OF ANDRA TESTS OF Flavour Physics

DNA Tests of Flavour Models

O_i : *Observables M_i* : *Models beyond SM*

	M_1	M_2	M_3	M_4	M_5
O_1	***	*	*	*	**
O_2	*	**	***	**	*
O_3	**	***	**	*	*
O_4	***	**	*	***	**
O_5	*	***	*	**	***

Very large New Physics effect Moderate New Physics effect Very small New Physics effect

DNA Tests of Flavour Models

0909.1333

					24			
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	4G
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?	**
ϵ_K	*	***	***	*	*	**	***	**
$S_{\psi\phi}$	***	***	***	*	*	***	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?	**
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?	*
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?	**
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?	**
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***	*
d_e	***	***	**	*	***	*	***	*
$(g-2)_{\mu}$	***	***	**	***	***	*	?	*

	2020 Vis	ion
		NEW SM
	$D^0 - \overline{D}^0$	**
	ϵ_K	**
➡	$S_{\psi\phi}$	***
ŕ	$S_{\phi K_S}$	**
	$A_{\rm CP}\left(B\to X_s\gamma\right)$	*
	$A_{7,8}(B \to K^* \mu^+ \mu^-)$	**
	$A_9(B \to K^* \mu^+ \mu^-)$	*
	$B \to K^{(*)} \nu \bar{\nu}$	***
	$B_s \to \mu^+ \mu^-$	***
	$K^+ o \pi^+ \nu \bar{\nu}$	**
	$K_L \to \pi^0 \nu \bar{\nu}$	***
	$\mu ightarrow e \gamma$	***
	$ au ightarrow \mu \gamma$	***
	$\mu + N \rightarrow e + N$	***
	d_n	***
	d_e	***
	$(g-2)_{\mu}$	**
4th Movement Finale: Vivace !

74 Amsterdam0411

Amsterdam0411

Superstars of 2011 – 2015 (Flavour Physics)

Many Thanks to my Collaborators

S. Gori

P. Paradisi

M. Blanke

B. Duling

A. Poschen-S. Recksiegel rieder

C. Tarantino

A. Weiler

77

M. Albrecht

B. Duling

K. Gemmler

A. Weiler

S. Recksiegel

G. Isidori

D. Guadagnoli

K. Gemmler

G. Isidori

More Collaborators

I.Bigi

P. Ball

A. Bharucha

M. Wick

L. Calibbi

M. Nagai

More Collaborators

P. Ball

A. Bharucha

M. Wick

L. Calibbi

M. Nagai

L. Merlo

C. Grojean

A. Lenz

S. Pokorski

E. Stamou

R. Ziegler

New Animalcula in Sight !

Backup

Unitarity Triangle in LO Approximation

Correlations in a Flavour Model with LH Currents

$$K_L \rightarrow \pi^0 \nu \overline{\nu} vs. S_{\psi \phi}$$
 (LHT)

(Simultaneous Large Enhancements unlikely)

$$\mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-} \text{ vs. } \mathbf{K}^{+} \rightarrow \pi^{+}\nu\overline{\nu}$$

(LHT)

Blanke, AJB, Duling, Recksiegel, Tarantino

: (Ellis, Hisano, Raidal, Shimizu; Arganda, Herrero; Paradisi) (Brignole, Rossi)

LHT

: (Blanke, AJB, Duling, Poschenrieder, Tarantino) (2007) del Aguila, Illana, Jenkins (2008), Goto, Okada, Yamamoto (2009) Impressive Success of the CKM Picture of Flavour Changing Interactions

(GIM) (NFC)

(Once quark masses determined : only 4 parameters)

- All leading decays of K, D, B⁰_s, B⁰_d mesons correctly described
- Suppressed transitions : $K^0 \overline{K}^0$, $B^0_d \overline{B}^0_d$, $B^0_s \overline{B}^0_s$ mixings found at suppressed level

CP-violating Data (K, B_d) correctly described

 $B \to X_s \gamma, \ B \to X_s l^+ l^-$ OK

$$(g-2)_{\mu}?$$

Use Service Set and Service Set and S consistent with experiment: (not seen)

Standard Model Predictions for Superstars

$$S_{\psi\phi} = 0.035 \pm 0.005$$

 $(S_{\psi\phi})_{exp} = 0.52 \pm 0.20$

$$Br(B_{s} \rightarrow \mu^{+}\mu^{-}) = (3.2 \pm 0.2) \cdot 10^{-9}$$
$$Br(B_{s} \rightarrow \mu^{+}\mu^{-})_{exp} \leq 4.2 \cdot 10^{-8}$$

$$\begin{aligned} & \text{Br} \Big(\text{B}_{\text{d}} \to \mu^{+} \mu^{-} \Big) = \big(1.0 \pm 0.1 \big) \cdot 10^{-10} \\ & \text{Br} \Big(\text{B}_{\text{d}} \to \mu^{+} \mu^{-} \Big)_{\text{exp}} \leq 1.0 \cdot 10^{-8} \end{aligned} \qquad \begin{aligned} & \text{Br} \Big(\text{K}^{+} \to \pi^{+} \nu \overline{\nu} \Big) = \big(8.4 \pm 0.7 \big) \cdot 10^{-11} \\ & \text{Br} \Big(\text{K}^{+} \to \pi^{+} \nu \overline{\nu} \Big)_{\text{exp}} = \big(17 \pm 11 \big) \cdot 10^{-11} \end{aligned}$$

$$\begin{split} \gamma &= \left(64.2 \pm 3.1 \right)^{o} \\ \gamma_{exp} &= \left(75 \pm 15 \right)^{o} \end{split} \text{ (tree)} \begin{aligned} & \text{Br} \left(K_{L} \rightarrow \pi^{0} \nu \overline{\nu} \right) = \left(2.8 \pm 0.6 \right) \cdot 10^{-11} \\ & \text{Br} \left(K_{L} \rightarrow \pi^{0} \nu \overline{\nu} \right)_{exp} \leq 6 \cdot 10^{-8} \end{aligned}$$

Maximal Enhancements of $S_{\psi\phi}$, $Br(B_s \rightarrow \mu^+ \mu^-)$ and $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

(without taking correlation between them)

	Upper Bound	Enhancement of	Enhancement of
Model	on (S _{ψφ})	$\mathbf{Br}(\mathbf{B}_{s} \to \mu^{+}\mu^{-})$	$Br(K^{+} \rightarrow \pi^{+} \nu \overline{\nu})$
CMFV	0.04	20%	20%
MFV	0.04	1000%	30%
LHT	0.30	30%	150%
RS	0.75	10%	60%
4G	0.80	400%	300%
AC	0.75	1000%	2%
RVV	0.50	1000%	10%
RS = RS with custodial protections			
RH Currents	AC = Agashe, Carone		U(1) _F
	$\mathbf{RVV} = \mathbf{Ross}, \mathbf{V}$	RVV = Ross, Velaso-Sevilla, Vives (04)	

Dominant New Flavour and CP Violating Interactions at $0(\mu_{NP})$

a) Misalignment of quark- and squark mass matrices, similarly for lepton sector
b) Effects enhanced at large tanβ: δ^{AB}_{ij}

Typical scales(200-1000 GeV)

New flavour and CP violating mixing matrices in the interactions of SM fermions with mirror fermions mediated by W_H, Z_H, A_H

Typical scales (500-1000 GeV)

New Heavy Gauge Bosons (KK) New Heavy Vector-like Fermions (KK)

Tree Level FCNC's mediated by KK Gluon (ΔF=2) and Z(ΔF=1) (Typical scales M_{KK} ≈2-3 TeV) Related to the explanation of hierarchies in masses and mixings

2 x 2 Flavour Matrix of Basic NP Scenarios

(AJB, hep-ph/0101336, Erice)

Correlation in LHT

Correlation in 4G Model

AJB, Duling, Feldmann, Heidsieck, Promberger, Recksiegel (BDFHPR)

Correlation in Flavour SUSY Models

Minimal Flavour Violation (MFV)

SM Yukawa Couplings are the only breaking sources of the SU(3)⁵ flavour symmetry of the low-energy effective theory

$$(\mathbf{Y}_{t}, \mathbf{Y}_{b})$$

D'Ambrosio, Guidice, Isidori, Strumia (02) Chivukula, Georgi (87)

CKM the only source of Flavour Violation but for $Y_t \approx Y_b$ new operators could enter

Operator structure of SM remains

VERY STRONG RELATIONS BETWEEN K and B Physics and generally ΔF=2 and ΔF=1 FCNC Processes

AJB, Gambino, Gorbahn, Jäger, Silvestrini (00) Ali, London

106 Amsterdam0411

*) See however Faller, Fleischer, Mannel (08)

$$\bigstar \quad \mathbf{K}_{\mathrm{L}} \to \pi^{0} \nu \overline{\nu} \text{ vs. } \mathbf{K}^{+} \to \pi^{+} \nu \overline{\nu}$$

2 x 2 Flavour Matrix of Basic NP Scenarios

(AJB, hep-ph/0101336, Erice)

3 x 3 Flavour Code Matrix

(hep-ph/1012.1447): "MFV and Beyond"

		Left	Right	Scalar	Currents
	Model	LH	RH	SH	
	MFV				
(Beyond MFV)	BMFV				
(Flavour Blind Phases)	FBPs				

Flavour Code Matrices

CMFV	LH	RH	SH
MFV	*		
BMFV			
FBPs			

LHT	LH	RH	SH
MFV	*		
BMFV	-		
FBPs			

2HDM _{MFV}	LH	RH	SH
MFV	*		*
BMFV			
FBPs			

SM4	LH	RH	SH
MFV	*		
BMFV	-		
FBPs			

Flavour Code Matrices

FBMSSM	LH	RH	SH
MFV	*		*
BMFV			
FBPs			

RHMFV	LH	RH	SH
MFV	*		
BMFV			
FBPs			

δLL	LH	RH	SH
MFV	*		*
BMFV			
FBPs			

RSc	LH	RH	SH
MFV	*		
BMFV			
FBPs			

Flavour Code Matrices

AMK	LH	RH	SH
MFV	*		*
BMFV	-		
FBPs			

RVV2	LH	RH	SH
MFV	*		*
BMFV	-		
FBPs			

AC	LH	RH	SH
MFV	*		*
BMFV			
FBPs			

SSU(5) _{RN}	LH	RH	SH
MFV	*		*
BMFV			
FBPs			

© Excellence Cluster Universe • www.universe-cluster.de

 $\overline{\mathbf{v}}$

With ϵ'/ϵ Constraint

Much larger enhancements than in LHT, RS, SUSYf possible

$$\mathbf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$$
 and $\mathbf{K}_{\mathrm{L}} \rightarrow \pi^0 \nu \overline{\nu}$ (Z°-penguins)

(TH cleanest FCNC decays in Quark Sector)

Can SM describe simultaneously CP in K and B_d Systems?

Possible Solutions to $\varepsilon_{\rm K}$ - Anomaly

$$\left|\varepsilon_{K}\right|^{SM} \sim \kappa_{\varepsilon} \hat{B}_{K} \left|V_{cb}\right|^{2} \left(\frac{1}{2} \left|V_{cb}\right|^{2} R_{t}^{2} \sin 2\beta \eta_{tt}^{QCD} S_{0}(x_{t}) + F(\eta_{ct}^{QCD}, \eta_{cc}^{QCD}, m_{c}, ...)\right)\right)$$

Direct Search: Production of New Heavy Particles

Search for New Physics in 2010's through Flavour Physics

